Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioorg Chem ; 77: 600-607, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29494816

RESUMO

Indoleamine 2,3-dioxygenase is a heme-containing enzyme implicated in the down regulation of the anti-tumor immune response, and considered a promising anti-cancer drug target. Several pharmaceutical companies, including Pfizer, Merck, and Bristol-Myers Squibb, are known to be in pursuit of IDO inhibitors, and Incyte recently reported good results in the phase II clinical trial of the IDO inhibitor Epacadostat. In previous work, we developed a series of IDO inhibitors based on a sulfonylhydrazide core structure, and explored how they could serve as potent IDO inhibitors with good drug profiles. Herein, we disclose the development of the 4-bromophenylhydrazinyl benzenesulfonylphenylurea 5k, a potent IDO inhibitor which demonstrated 25% tumor growth inhibition in a murine CT26 syngeneic model on day 18 with 100 mg/kg oral administration twice daily, and a 30% reduction in tumor weight. Pharmacodynamic testing of 5k found it to cause a 25% and 21% reduction in kyn/trp ratio at the plasma and tumor, respectively. In the CT26 tumor model, 5k was found to slightly increase the percentage of CD3+ T cells and lymphocyte responsiveness, indicating that 5k may have potential in modulating anti-tumor immunity. These data suggest 5k to be worthy of further investigation in the development of anti-tumor drugs.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Sulfonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/isolamento & purificação , Complexo CD3/análise , Complexo CD3/isolamento & purificação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química
2.
Free Radic Biol Med ; 113: 505-518, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29080842

RESUMO

Nuclear factor erythroid-2-related factor 2 (NRF2) mainly regulates transcriptional activation through antioxidant-responsive elements (AREs) present in the promoters of NRF2 target genes. Recently, we found that NRF2 was overexpressed in a KB-derived drug-resistant cancer cell panel. In this panel, KB-7D cells, which show acquired resistance to topoisomerase II (Top II) poisons, exhibited the highest NRF2 activation. To investigate whether NRF2 directly contributed to acquired resistance against Top II poisons, we manipulated NRF2 by genetic and pharmacological approaches. The result demonstrated that silencing of NRF2 by RNA interference increased the sensitivity and treatment with NRF2 activator decreased the sensitivity of KB and KB-7D cells toward Top II poisons. Further, increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation activated NRF2 signaling in KB-7D cells. Moreover, increased binding of NRF2 to an ARE in the promoter of ATP-binding cassette subfamily C member 1 (ABCC1) directly contributed to Top II poison resistance. In addition, activation of NRF2 increased glutathione level and antioxidant capacity in KB-7D cells compared with that in KB cells; moreover, high glutathione level provided survival advantage to KB-7D cells. Our study is the first to show that aberrant NRF2 activation is via increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation, which increases the acquired resistance and promote the survival of Top II poison-resistant cancer cells. Importantly, NRF2 downstream effectors ABCC1 and glutathione directly contribute to acquired resistance and survival, respectively. These results suggest that blockade of NRF2 signaling may enhance therapeutic efficacy and reduce the survival of Top II poison-refractory tumors in clinical.


Assuntos
DNA Topoisomerases Tipo II/genética , Regulação Neoplásica da Expressão Gênica , Glutationa/metabolismo , Histona Acetiltransferases/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas B-raf/genética , Acetilação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas B-raf/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transcrição Gênica
3.
J Med Chem ; 60(13): 5599-5612, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28609101

RESUMO

Humans have two glutaminase genes, GLS (GLS1) and GLS2, each of which has two alternative transcripts: the kidney isoform (KGA) and glutaminase C (GAC) for GLS, and the liver isoform (LGA) and glutaminase B (GAB) for GLS2. Initial hit compound (Z)-5-((1-(4-bromophenyl)-2,5-dimethyl-1H-pyrrol-3-yl)methylene)thiazolidine-2,4-dione (2), a thiazolidine-2,4-dione, was obtained from a high throughput screening of 40 000 compounds against KGA. Subsequently, a series of thiazolidine-2,4-dione derivatives was synthesized. Most of these were found to inhibit KGA and GAC with comparable activities, were less potent inhibitors of GAB, and were moderately selective for GLS1 over GLS2. The relationships between chemical structure, activity, and selectivity were investigated. The lead compounds obtained were found to (1) offer in vitro cellular activities for inhibiting cell growth, clonogenicity, and cellular glutamate production, (2) exhibit high concentrations of exposure in plasma by a pharmacokinetic study, and (3) reduce the tumor size of xenografted human pancreatic AsPC-1 carcinoma cells in mice.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Tiazolidinedionas/química , Tiazolidinedionas/farmacologia , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/uso terapêutico , Glutaminase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ratos , Ratos Sprague-Dawley , Tiazolidinedionas/sangue , Tiazolidinedionas/uso terapêutico
4.
J Med Chem ; 59(1): 419-30, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26653033

RESUMO

Tryptophan metabolism has been recognized as an important mechanism in immune tolerance. Indoleamine 2,3-dioxygenase plays a key role in local tryptophan metabolism via the kynurenine pathway and has emerged as a therapeutic target for cancer immunotherapy. Our prior study identified phenyl benzenesulfonyl hydrazide 2 as a potent in vitro (though not in vivo) inhibitor of indoleamine 2,3-dioxygenase. Further lead optimization to improve in vitro potencies and pharmacokinetic profiles resulted in N'-(4-bromophenyl)-2-oxo-2,3-dihydro-1H-indole-5-sulfonyl hydrazide 40, which demonstrated 59% oral bioavailability and 73% of tumor growth delay without apparent body weight loss in the murine CT26 syngeneic model, after oral administration of 400 mg/kg. Accordingly, 40, is proposed as a potential drug lead worthy of advanced preclinical evaluation.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Desenho de Fármacos , Inibidores Enzimáticos/farmacocinética , Humanos , Cinurenina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Triptofano/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nanomedicine ; 8(8): 1301-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22349097

RESUMO

A novel poly(oligo(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) ethyl ether methacrylate)-poly(acrylic acid) interpenetrating network (IPN) nanoparticle was synthesized. The temperature-responsive properties of the IPN nanoparticles were investigated by a dynamic light scattering method. Atomic force microscopic images confirmed the homogenous and monodisperse morphology of the IPN nanoparticles. Both visual observation and viscosity testing demonstrated that the IPN nanoparticles exhibit thermogelling properties at body temperature, 37 °C. Subsequent studies verified that such temperature-sensitive properties of IPN nanoparticles allow their ease of injection and then slow release of model proteins, both in vitro and in vivo. Histological analysis showed that our IPN implants exerted minimal inflammation following subcutaneous implantation. Our results support the idea that, by simply mixing with proteins of interest, the novel IPN nanoparticles can be used to form in situ thermogelling devices for controlled protein release. FROM THE CLINICAL EDITOR: This paper discusses a temperature responsive interpenetrating network (IPN) polymeric nanoparticle that can be used to form in situ thermogelling devices for controlled protein release by simply mixing them with proteins of interest.


Assuntos
Nanopartículas/química , Polímeros/química , Proteínas , Resinas Acrílicas/química , Humanos , Concentração de Íons de Hidrogênio , Polietilenoglicóis , Polímeros/síntese química , Proteínas/química , Proteínas/metabolismo , Propriedades de Superfície , Temperatura , Viscosidade
6.
Biomaterials ; 32(33): 8394-403, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21864899

RESUMO

Almost all biomaterial implants are surrounded by a fibrotic capsule, although the mechanism of biomaterial-mediated fibrotic reactions is mostly unclear. To search for the types of cells responsible for triggering the tissue responses, we used poly-L glycolic acid polymers capable of releasing various reagents. We first identified that CD45(+)/Collagen 1(+) fibrocytes are recruited and resided within the fibrotic capsule at the implant interface. Interestingly, we found that the recruitment of fibrocytes and the extent of fibrotic tissue formation (collagen type I production) were substantially enhanced and reduced by the localized release of compound 48/80 and cromolyn, respectively. Since it is well established that compound 48/80 and cromolyn alter mast cell reactions, we hypothesized that mast cells are responsible for triggering fibrocyte recruitment and subsequent fibrotic capsule formation surrounding biomaterial implants. To directly test this hypothesis, similar studies were carried out using mast cell deficient mice, WBB6F1/J-Kit(W)/Kit(W-v)/, and their congenic controls. Indeed, mast cell deficient mice prompted substantially less fibrocyte and myofibroblast responses in comparison to C57 wild type mice controls. Most interestingly, subcutaneous mast cell reconstitution of WBB6F1/J-Kit(W)/Kit(W-v)/J mice almost completely restored the fibrocyte response in comparison to the C57 wild type response. These results indicate that the initial biomaterial interaction resulting in the stimulation of mast cells and degranulation byproducts not only stimulates the inflammatory cascade but significantly alters the downstream fibrocyte response and degree of fibrosis.


Assuntos
Materiais Biocompatíveis , Fibroblastos/citologia , Mastócitos/citologia , Animais , Feminino , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Tissue Eng Part C Methods ; 16(1): 23-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19327002

RESUMO

Polymeric tissue engineering scaffolds prepared by conventional techniques like salt leaching and phase separation are greatly limited by their poor biomolecule-delivery abilities. Conventional methods of incorporation of various growth factors, proteins, and/or peptides on or in scaffold materials via different crosslinking and conjugation techniques are often tedious and may affect scaffold's physical, chemical, and mechanical properties. To overcome such deficiencies, a novel two-step porous scaffold fabrication procedure has been created in which bovine serum albumin microbubbles (henceforth MB) were used as porogen and growth factor carriers. Polymer solution mixed with MB was phase separated and then lyophilized to create porous scaffold. MB scaffold triggered substantially lesser inflammatory responses than salt-leached and conventional phase-separated scaffolds in vivo. Most importantly, the same technique was used to produce insulin-like growth factor-1 (IGF-1)-eluting porous scaffolds, simply by incorporating IGF-1-loaded MB (MB-IGF-1) with polymer solution before phase separation. In vitro such MB-IGF-1 scaffolds were able to promote cell growth to a much greater extent than scaffold soaked in IGF-1, confirming the bioactivity of the released IGF-1. Further, such MB-IGF-1 scaffolds elicited IGF-1-specific collagen production in the surrounding tissue in vivo. This novel growth factor-eluting scaffold fabrication procedure can be used to deliver a range of single or combination of bioactive biomolecules to substantially promote cell growth and function in degradable scaffold.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microbolhas , Células 3T3 , Animais , Materiais Biocompatíveis , Bovinos , Técnicas de Cultura de Células , Proliferação de Células , Colágeno/química , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Polímeros/química , Porosidade , Soroalbumina Bovina/química , Estresse Mecânico , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA