Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Transl Oncol ; 45: 101992, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38743987

RESUMO

CBLC (CBL proto-oncogene C) is an E3 ubiquitin protein ligase that plays a key role in cancers. However, the function and mechanism of CBLC in colorectal cancer (CRC) has not been fully elucidated. The aim of this study was to investigate the function of CBLC in CRC and its underlying molecular mechanism. High CBLC levels were certified in tumor tissues of CRC patients, and its expression was positively associated with TNM stage. Next, we explored the role of CBLC in CRC using gain or loss of function. For biological function analysis, CCK-8 cell proliferation, colony formation, flow cytometry, scratch, and transwell assays collectively suggested that CBLC overexpression promoted cell proliferation, cell cycle progression, migration and invasion. As observed, CBLC knockdown exhibited exactly opposite effects, resulting in impaired tumorigenicity in vitro. Xenograft studies displayed that CBLC overexpression accelerated tumor growth and promoted tumor metastasis to the lung, while the inhibitory effects of CBLC knockdown on tumorigenicity and metastasis ability of CRC cells was also confirmed. Furthermore, the molecular mechanism of CBLC in CRC was explored. CBLC induced the activation of ERK signaling pathway, further leading to its pro-tumor role. Notably, CBLC decreased ABI1 (Abelson interactor protein-1, a candidate tumor suppressor) protein levels through its ubiquitin ligase activity, while ABI1 upregulation abolished the effects of CBLC on the tumorigenesis of CRC. Taken together, these results demonstrate that CBLC acts as a tumor promoter in CRC through triggering the ubiquitination and degradation of ABI1 and activating the ERK signaling pathway. CBLC may be a potential novel target for CRC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38761011

RESUMO

Bacteriophages have been used across various fields, and the utilization of CRISPR/Cas-based genome editing technology can accelerate the research and applications of bacteriophages. However, some bacteriophages can escape from the cleavage of Cas protein, such as Cas9, and decrease the efficiency of genome editing. This study focuses on the bacteriophage T7, which is widely utilized but whose mechanism of evading the cleavage of CRISPR/Cas9 has not been elucidated. First, we test the escape rates of T7 phage at different cleavage sites, ranging from 10 -2 to 10 -5. The sequencing results show that DNA point mutations and microhomology-mediated end joining (MMEJ) at the target sites are the main causes. Next, we indicate the existence of the hotspot DNA region of MMEJ and successfully reduce MMEJ events by designing targeted sites that bypass the hotspot DNA region. Moreover, we also knock out the ATP-dependent DNA ligase 1. 3 gene, which may be involved in the MMEJ event, and the frequency of MMEJ at 4. 3 is reduced from 83% to 18%. Finally, the genome editing efficiency in T7 Δ 1. 3 increases from 20% to 100%. This study reveals the mechanism of T7 phage evasion from the cleavage of CRISPR/Cas9 and demonstrates that the special design of editing sites or the deletion of key gene 1. 3 can reduce MMEJ events and enhance gene editing efficiency. These findings will contribute to advancing CRISPR/Cas-based tools for efficient genome editing in phages and provide a theoretical foundation for the broader application of phages.

3.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727332

RESUMO

Spectroscopy is a powerful tool to identify the specific fingerprints of analytes in a label-free way. However, conventional sensing methods face unavoidable barriers in analyzing trace-amount target molecules due to the difficulties of enhancing the broadband molecular absorption. Here, we propose a sensing scheme to achieve strong fingerprint absorption based on the angular-scanning strategy on an all-silicon metasurface. By integrating the mid-infrared and terahertz sensing units into a single metasurface, the sensor can efficiently identify 2,4-DNT with high sensitivity. The results reveal that the fingerprint peak in the enhanced fingerprint spectrum is formed by the linked envelope. It exhibits a significant enhancement factor exceeding 64-fold in the terahertz region and more than 55-fold in the mid-infrared region. Particularly, the corresponding identification limit of 2,4-DNT is 1.32 µg cm-2, respectively. Our study will provide a novel research idea in identifying trace-amount explosives and advance practical applications of absorption spectroscopy enhancement identification in civil and military security industries.

4.
J Transl Med ; 22(1): 401, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689341

RESUMO

BACKGROUND: The cancer microbiota was considered the main risk factor for cancer progression. We had proved that Fusobacterium periodonticum (F.p) was higher abundance in Esophageal cancer(EC)tissues. Bioinformation analysis found that BCT was a key virulence protein of F.p. However, little is known about the role and mechanism of BCT in EC. This study aimed to recognize the key virulence protein of F.p and explore the mechanism of BCT in promoting EC. METHODS: We constructed a eukaryotic expression vector and purified the recombinant protein BCT. CCK8 used to analyzed the activity of EC after treated by different concentration of BCT. UPLC-MS/MS and ELISA used to detect the metabonomics and metabolites. The ability of migration and invasion was completed by transwell assay. RT-QPCR, WB used to analyze the expression of relevant genes. RESULTS: Our data showed that BCT was higher expression in EC tumor tissues (p < 0.05) and BCT in 20 µg/mL promoted the survival, invasion and migration of EC cells (EC109) (p < 0.05). Meanwhile, UPLC-MS/MS results suggested that BCT resulted in an augmentation of hypotaurine metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis, tryptophan metabolism, citrate cycle activity in EC109. The metabolic changes resulted in decreasing in glucose and pyruvate levels but increase in lactate dehydrogenase (LDH) activity and lactic acid (LA) as well as the expression of glucose transporter 1, Hexokinase 2, LDH which regulated the glycolysis were all changed (p < 0.05). The BCT treatment upregulated the expression of TLR4, Akt, HIF-1α (p < 0.05) which regulated the production of LA. Furthermore, LA stimulation promoted the expression of GPR81, Wnt, and ß-catenin (p < 0.05), thereby inducing EMT and metastasis in EC109 cells. CONCLUSION: Altogether, these findings identified that impact of BCT in regulation of glycolysis in EC109 and its involves the TLR4/Akt/HIF-1α pathway. Meanwhile, glycolysis increasing the release of LA and promote the EMT of EC109 by GPR81/Wnt/ß-catenin signaling pathway. In summary, our findings underscore the potential of targeting BCT as an innovative strategy to mitigate the development of EC.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Fusobacterium , Glucose , Ácido Láctico , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Ácido Láctico/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Fusobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica
5.
Free Radic Biol Med ; 213: 512-522, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301975

RESUMO

Trace metal zinc is involved in key processes of solid tumors by its antioxidant properties, while the role of zinc at the onset of esophageal squamous cell carcinoma (ESCC) remains controversial. This study aimed to determine whether zinc is associated with the ESCC and underlying molecular events involving malignant progression. Based on a case-control study, we found serum and urine zinc were decreased and correlated with ESCC progression. Thus, an in vitro model for zinc deficiency (ZD) was established, and we found that ZD contributed to the proliferation, migration, and invasion of EC109 cells. Untargeted metabolomics identified 59 upregulated metabolites and 6 downregulated metabolites, among which glycolysis and ferroptosis-related oxidation of chain fatty acids might play crucial steps in ZD-treated molecular events. Interestingly, ZD disrupted redox homeostasis and enhanced cytosolic Fe2+ of EC109 cells, while lipid peroxidation, the key marker of ferroptosis occurrence, was decreased after ZD treatment. The mechanism underlying these changes may involve ZD-enhanced ESCC glycolysis and lactate production, which confer ferroptosis resistance by inhibiting of p-AMPK and leading to the upregulation of SREBP1 and SCD1 to enhance the production of anti-ferroptosis monounsaturated fatty acids.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Desnutrição , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Ácido Láctico , Estudos de Casos e Controles , Ferroptose/genética , Zinco/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
Nat Commun ; 15(1): 1381, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360860

RESUMO

Soft tissue sarcoma is a broad family of mesenchymal malignancies exhibiting remarkable histological diversity. We portray the proteomic landscape of 272 soft tissue sarcomas representing 12 major subtypes. Hierarchical classification finds the similarity of proteomic features between angiosarcoma and epithelial sarcoma, and elevated expression of SHC1 in AS and ES is correlated with poor prognosis. Moreover, proteomic clustering classifies patients of soft tissue sarcoma into 3 proteomic clusters with diverse driven pathways and clinical outcomes. In the proteomic cluster featured with the high cell proliferation rate, APEX1 and NPM1 are found to promote cell proliferation and drive the progression of cancer cells. The classification based on immune signatures defines three immune subtypes with distinctive tumor microenvironments. Further analysis illustrates the potential association between immune evasion markers (PD-L1 and CD80) and tumor metastasis in soft tissue sarcoma. Overall, this analysis uncovers sarcoma-type-specific changes in proteins, providing insights about relationships of soft tissue sarcoma.


Assuntos
Hemangiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Proteômica , Sarcoma/metabolismo , Biomarcadores , Análise por Conglomerados , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Microambiente Tumoral
7.
Free Radic Biol Med ; 213: 150-163, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38190923

RESUMO

Quercetin (Quer) is a natural flavonoid known for its inhibitory effects against various cancers. However, the mechanism by which Quer inhibits gastric cancer (GC) has not yet been fully elucidated. Ferroptosis, a mode of programmed cell death resulting from lipid peroxidation, is regulated by abnormalities in the antioxidant system and iron metabolism. Through flow cytometry and other detection methods, we found that Quer elevated lipid peroxidation levels in GC cells. Transmission electron microscopy confirmed an increase in ferroptosis in Quer-induced GC. We demonstrated that Quer inhibits SLC1A5 expression. Molecular docking revealed Quer's binding to SLC1A5 at SER-343, SER-345, ILE-423, and THR-460 residues. Using immunofluorescence and other experiments, we found that Quer altered the intracellular ROS levels, antioxidant system protein expression levels, and iron content. Mechanistically, Quer binds to SLC1A5, inhibiting the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), resulting in decreased xCT/GPX4 expression. Quer/SLC1A5 signaling activated p-Camk2, leading to upregulated p-DRP1 and enhanced ROS release. Additionally, Quer increased the intracellular iron content by inhibiting SLC1A5. These three changes collectively led to ferroptosis in GC cells. In conclusion, Quer targets SLC1A5 in GC cells, inhibiting the NRF2/xCT pathway, activating the p-Camk2/p-DRP1 pathway, and accelerating iron deposition. Ultimately, Quer promotes ferroptosis in GC cells, inhibiting GC progression. Overall, our study reveals that Quer can potentially impede GC progression by targeting SLC1A5, offering novel therapeutic avenues through the modulation of ferroptosis and iron homeostasis.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Quercetina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Antioxidantes , Ferroptose/genética , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Ferro , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos
8.
Toxicol Sci ; 199(1): 12-28, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38291902

RESUMO

Intensified sanitation practices amid the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak might result in the increased release of chloramine disinfectants into surface water, significantly promoting the formation of nitrosamine disinfection by-products (DBPs) in drinking water. Unfortunately, these nitrosamine DBPs exhibit significant genotoxic, carcinogenic, and mutagenic properties, whereas chlorinating disinfectants remain in global practice. The current review provides valuable insights into the occurrence, identification, contamination status, exposure limits, and toxicity of the new unregulated disinfection by-products (nitrosamine DBPs) in drinking water. As a result, concentrations of nitrosamine DBPs far exceed allowable limits in drinking water, and prolonged exposure has the potential to cause metabolic disorders, a critical step in tumor initiation and progression. Importantly, based on recent research, we have concluded the role of nitrosamines DBPs in different metabolic pathways. Remarkably, nitrosamine DBPs can induce chronic inflammation and initiate tumors by activating sphingolipid and polyunsaturated fatty acid metabolism. Regarding amino acid and nucleotide metabolism, nitrosamine DBPs can inhibit tryptophan metabolism and de novo nucleotide synthesis. Moreover, inhibition of de novo nucleotide synthesis fails to repair DNA damage induced by nitrosamines. Additionally, the accumulation of lactate induced by nitrosamine DBPs may act as a pivotal signaling molecule in communication within the tumor microenvironment. However, with the advancement of tumor metabolomics, understanding the role of nitrosamine DBPs in causing cancer by inducing metabolic abnormalities significantly lags behind, and specific mechanisms of toxic effects are not clearly defined. Urgently, further studies exploring this promising area are needed.


Assuntos
Desinfetantes , Água Potável , Neoplasias , Nitrosaminas , Humanos , Nitrosaminas/toxicidade , Desinfetantes/toxicidade , Neoplasias/induzido quimicamente , Neoplasias/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Desinfecção , Purificação da Água , COVID-19 , Carcinógenos/toxicidade
9.
J Infect Dis ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243838

RESUMO

BACKGROUND: Clostridium difficile infection (CDI) is a debilitating nosocomial infection. C. difficile produces toxins A and B, which cause inflammation. Existing therapies have issues with recurrence, cost, and safety. We aim to discover a safe, effective, and economical non-microbiological therapeutic approach against CDI. METHODS: We included human primary peripheral blood mononuclear cells (PBMCs), fresh human colonic explants, and humanized HuCD34-NCG mice. Toxin A+B+ VPI10463 and A-B+ ribotype 017 C. difficile strains were used. We used single-cell RNA profiling and high-throughput screening to find actionable toxin B-dependent pathways in PBMCs. RESULTS: Histamine 1 receptor-related drugs were found among the hit compounds that reversed toxin-mediated macrophage inflammatory protein one alpha (MIP-1α) expression in PBMCs. We identified Loratadine as the safest representative antihistamine for therapeutic development. Loratadine inhibited toxin B-induced MIP-1α secretion in fresh human colonic tissues. Oral Loratadine (10 mg/kg/day) maintained survival, inhibited intestinal Ccl3 mRNA expression, and prevented vancomycin-associated recurrence in the VPI10463-infected mice and ribotype 017-infected hamsters. Splenocytes from Loratadine-treated mice conferred anti-inflammatory effects to the VPI10463-infected T/B cell-deficient Rag-/- mice. Oral Loratadine suppressed human MIP-1α expression in monocytes/macrophages in toxin B-expressing ribotype 017-infected humanized HuCD34-NCG mice. CONCLUSIONS: Loratadine may be repurposed to optimize existing therapies against CDI.


Loratadine is an FDA-approved antihistamine that inhibits toxin B-mediated pro-inflammatory macrophage inflammatory protein one alpha secretion from immune cells. The anti-inflammatory effect of Loratadine ameliorates intestinal inflammation in C. difficile-infected animals. Loratadine may be repurposed to optimize existing therapies.

10.
Phys Chem Chem Phys ; 26(2): 1067-1076, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38095244

RESUMO

Intramolecular π-π interactions are a significant research focus in fields such as chemistry, biology, and materials science. Different configurations of benzene-benzene moieties within a molecule can affect the magnitude of their π-π interactions, consequently influencing the electronic transport capabilities of the molecule. In this study, we designed three π-conjugated molecules, TPEM, TPEEM, and TEEPM, based on tetraphenylethene (TPE). These three molecules exhibit three distinct π-conjugated structures: linear cis-π-conjugation, linear trans-π-conjugation, and cross-π-conjugation. Thereinto, TPEM and TPEEM molecules share the same TPE core, with identical π-π interaction distances, while the TEEPM molecule has acetylene groups between the TPE units, thereby increasing the π-π interaction distances between the benzene moieties. Using density functional theory calculations combined with non-equilibrium Green's function (DFT+NEGF), our results reveal that the conductance order of different π-conjugated structures in TPEM and TPEEM molecules is as follows: cis > cross ≈ trans. Through analysis of transmission spectra, transmission pathways, and the innermost π orbitals, we find that in TPEM and TPEEM molecules, the cis- and cross-π-conjugated structures exhibit π-π interactions between benzene moieties and provide special through-space electron transport pathways, enhancing their electronic transport capabilities in coordination with the bonded molecular framework, whereas their trans-conjugated structures only allow electron transport along the molecular backbone. In contrast, in TEEPM molecule, due to the absence of π-π interactions, the conductance of different π-conjugated structures is primarily determined by the molecular backbone and follows the order: trans > cis > cross. These findings provide a theoretical basis for designing single-molecule electronic devices with multiple electron channels based on intramolecular π-π interactions.

11.
Eur J Nutr ; 63(2): 469-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040849

RESUMO

PURPOSE: Coffee intake and apolipoprotein B levels have been linked to gastric, colorectal, and esophageal cancers in numerous recent studies. However, whether these associations are all causal remains unestablished. This study aimed to assess the potential causal associations of apolipoprotein B and coffee intake with the risk of gastric, colorectal, and esophageal cancers using Mendelian randomization analysis. METHODS: In this study, we utilized a two-sample Mendelian randomization analysis to access the causal effects of coffee intake and apolipoprotein B on gastric, colorectal, and esophageal cancers. The summary statistics of coffee intake (n = 428,860) and apolipoprotein B (n = 439,214) were obtained from the UK Biobank. In addition, the summary statistics of gastric cancer, colorectal cancer, and esophageal cancer were obtained from the FinnGen biobank (n = 218,792). Inverse variance weighted, MR-Egger, weighted median, and weighted mode were applied to examine the causal relationship between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers. MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were performed to evaluate possible heterogeneity and pleiotropy. Steiger filtering and bidirectional mendelian randomization analysis were performed to evaluate the possible reverse causality. RESULTS: The result of the inverse variance weighted method indicated that apolipoprotein B levels were significantly associated with a higher risk of gastric cancer (OR = 1.392, 95% CI 1.027-1.889, P = 0.0333) and colorectal cancer (OR = 1.188, 95% CI 1.001-1.411, P = 0.0491). Furthermore, multivariable Mendelian randomization analysis also revealed a positive association between apolipoprotein B levels and colorectal cancer risk, but the effect of apolipoprotein B on gastric cancer risk disappeared after adjustment of coffee intake, body mass index or lipid-related traits. However, we did not discover any conclusive evidence linking coffee intake to gastric, colorectal, or esophageal cancers. CONCLUSIONS: This study suggested a causal association between genetically increased apolipoprotein B levels and higher risk of colorectal cancer. No causal relationship was observed between coffee intake and gastric, colorectal, or esophageal cancers.


Assuntos
Neoplasias Colorretais , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/genética , Café/efeitos adversos , Análise da Randomização Mendeliana , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/genética , Apolipoproteínas B , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética
12.
Environ Int ; 183: 108358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056095

RESUMO

AIMS: Previous studies have related heat waves to morbidity and mortality of cardiovascular diseases; however, potential mechanisms remained limited. Our aims were to investigate the short-term effects of heat waves on a series of clinical/subclinical indicators associated with cardiovascular health. METHODS: Our study used 80,574 health examination records from the Health Management Center of Nanjing Zhongda Hospital during the warm seasons of 2019-2021, including 62,128 participants. A total of 11 recognized indicators of cardiovascular risk or injury were assessed. Air pollution and meteorological data were obtained from the Nanjing Ecological Environment Bureau and the China Meteorological Data Network, respectively. Heat waves were defined as a daily average temperature over the 95th percentile for three or more consecutive days from May to September. We used a combination of linear mixed effects models and distributed lag nonlinear models to assess the lagged effects of heat waves on clinical and subclinical cardiovascular indicators. Stratified analyses based on individuals' characteristics, including gender, age, body mass index (BMI), diabetes, and hypertension, were also performed. RESULTS: Heat waves were related to significant changes in most indicators, with the magnitude of effects generally peaking at a lag of 0 to 3 days. Moreover, the cumulative percentage changes over lag 0-7 days were -0.82 % to -2.55 % in blood pressure, 1.32 % in heart rate, 0.20 % to 2.66 % in systemic inflammation markers, 0.36 % in a blood viscosity parameter, 9.36 % in homocysteine, and 1.35 % to 3.25 % in injuring myocardial enzymes. Interestingly, females and males showed distinct susceptibilities in different indicators. Stronger effects were also found in participants aged 50 years or over, individuals with abnormal BMI status, and patients with diabetes. CONCLUSION: Short-term exposure to heat waves could significantly alter clinical/subclinical cardiovascular indicator profiles, including blood pressure changes, increased heart rate, acute systemic inflammation, elevated blood viscosity, and myocardial injury.


Assuntos
Poluição do Ar , Diabetes Mellitus , Masculino , Adulto , Feminino , Humanos , Poluição do Ar/análise , Estações do Ano , China , Inflamação
13.
Gastroenterology ; 166(3): 450-465.e33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995868

RESUMO

BACKGROUND & AIMS: Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract, and it has high metastatic and recurrence rates. We aimed to characterize the proteomic features of GIST to understand biological processes and treatment vulnerabilities. METHODS: Quantitative proteomics and phosphoproteomics analyses were performed on 193 patients with GIST to reveal the biological characteristics of GIST. Data-driven hypotheses were tested by performing functional experiments using both GIST cell lines and xenograft mouse models. RESULTS: Proteomic analysis revealed differences in the molecular features of GISTs from different locations or with different histological grades. MAPK7 was identified and functionally proved to be associated with tumor cell proliferation in GIST. Integrative analysis revealed that increased SQSTM1 expression inhibited the patient response to imatinib mesylate. Proteomics subtyping identified 4 clusters of tumors with different clinical and molecular attributes. Functional experiments confirmed the role of SRSF3 in promoting tumor cell proliferation and leading to poor prognosis. CONCLUSIONS: Our study provides a valuable data resource and highlights potential therapeutic approaches for GIST.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Animais , Camundongos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteômica , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Fatores de Processamento de Serina-Arginina
14.
Environ Toxicol ; 39(3): 1210-1220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921085

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high mortality and poor prognosis. Despite intensive research focused on tumor suppression, the 5-year survival rate of ESCC is lower than 15%. Therefore, investigate fundamental mechanisms involved in ESCC is on-demand crucial for diagnostics and developing targeted therapeutic drugs. Circular RNAs (circRNAs), as an emerging class of non-coding RNA, have been elucidated that circRNAs participated in regulating a variety of pathological processes and tumorigenesis. Nevertheless, the functional role of circRNAs in the occurrence and development of ESCC remains unclear. We identify a novel circRNA (hsa_circ_0001707), which was highly expressed in ESCC patients' tissues and cell lines. Furthermore, gain- and loss-of-function assays were performed and found that overexpression of hsa_circ_0001707 significantly promote tumor proliferation, metastasis, and invasion. By functioning as a competing endogenous RNA (ceRNA), the dual-luciferase activity assay verified that hsa_circ_0001707 can endogenously bind with miR-203a-3p and regulate its downstream gene Snail2. Rescue assay further confirms that hsa_circ_0001707 downregulation could partially attenuate the facilitation effect of miR-203a-3p, thereby inhibiting the endothelial-mesenchymal transition (EMT) process of ESCC. Our results suggested that hsa_circ_0001707 play an oncogenic role in the pathogenesis of ESCC, which might be a potential biomarker for diagnostics and targeting therapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , MicroRNAs/genética , RNA Circular/genética , Neoplasias Esofágicas/patologia , Transição Endotélio-Mesênquima , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
15.
World J Gastroenterol ; 29(44): 5935-5944, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38111508

RESUMO

BACKGROUND: Esophageal carcinoma is a highly aggressive digestive cancer responsible for a notable proportion of cancer-related deaths worldwide. Its elevated metastatic rate contributes to a poor prognosis in affected patients. In this case review, we aim to summarize the metastatic characteristics of intramural gastric metastasis (IGM) in mucosal esophageal squamous carcinoma. CASE SUMMARY: A 56-year-old man was admitted to our hospital because of a dry cough with an esophageal sensation for one year. Endoscopic examination revealed a 2.0 cm 1.0 cm, superficial esophageal squamous cell carcinoma, and the patient underwent endoscopic submucosal dissection (ESD). Fifteen months after ESD, positron emission tomography/computed tomography revealed that the metabolism of the stomach cardia wall had increased slightly. However, the mucosa of the gastric cardia was smooth under gastroendoscopy. Two years after ESD, endoscopic examination revealed a giant gastric cardia carcinoma, while the esophageal mucosa was smooth, and no advanced cancer was found. A biopsy of the gastric cardia indicated squamous-cell carcinoma. The patient received immunochemotherapy and radiotherapy for esophageal cancer for 8 mo and is currently under follow-up. CONCLUSION: Early-stage esophageal carcinoma with IGM is rare. Despite the ESD of the primary lesion, IGM may still occur and should be closely monitored after ESD.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias Esofágicas/patologia , Ressecção Endoscópica de Mucosa/métodos , Mucosa/patologia , Estômago/patologia , Imunoglobulina M , Resultado do Tratamento , Estudos Retrospectivos
16.
J Med Virol ; 95(11): e29219, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37966997

RESUMO

Since its outbreak in late 2021, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely reported to be able to evade neutralizing antibodies, becoming more transmissible while causing milder symptoms than previous SARS-CoV-2 strains. Understanding the underlying molecular changes of Omicron SARS-CoV-2 infection and corresponding host responses are important to the control of Omicron COVID-19 pandemic. In this study, we report an integrative proteomics and metabolomics investigation of serum samples from 80 COVID-19 patients infected with Omicron SARS-CoV-2, as well as 160 control serum samples from 80 healthy individuals and 80 patients who had flu-like symptoms but were negative for SARS-CoV-2 infection. The multiomics results indicated that Omicron SARS-CoV-2 infection caused significant changes to host serum proteome and metabolome comparing to the healthy controls and patients who had flu-like symptoms without COVID-19. Protein and metabolite changes also pointed to liver dysfunctions and potential damage to other host organs by Omicron SARS-CoV-2 infection. The Omicron COVID-19 patients could be roughly divided into two subgroups based on their proteome differences. Interestingly, the subgroup who mostly had received full vaccination with booster shot had fewer coughing symptom, changed sphingomyelin lipid metabolism, and stronger immune responses including higher numbers of lymphocytes, monocytes, neutrophils, and upregulated proteins related to CD4+ T cells, CD8+ effector memory T cells (Tem), and conventional dendritic cells, revealing beneficial effects of full COVID-19 vaccination against Omicron SARS-CoV-2 infection through molecular changes.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias , Proteoma , Proteômica , Anticorpos Neutralizantes , Anticorpos Antivirais
17.
Eur J Pharmacol ; 960: 176103, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37852570

RESUMO

The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.


Assuntos
Mastócitos , Neoplasias , Humanos , Mastócitos/metabolismo , Microambiente Tumoral , Neoplasias/patologia , Imunoterapia/métodos , Apresentação de Antígeno
18.
Toxicol Ind Health ; 39(12): 700-711, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864286

RESUMO

Exposure to arsenic, an environmental contaminant, is known to cause arsenicosis and cancer. Although considerable research has been conducted to understand the underlying mechanism responsible for arsenic-induced cancers, the precise molecular mechanisms remain unknown, especially at the epigenetic regulation level. Long non-coding RNAs (LncRNAs) that have been shown to mediate various biological processes, including proliferation, apoptosis, necrosis, and mutagenesis. There are few studies on LncRNAs and biological damage caused by environmental pollutants. The LncRNAs taurine upregulated gene 1 (TUG1) regulates cell growth both in vitro and in vivo, and contributes its oncogenic role. However, the precise roles and related mechanisms of arsenic-induced cell apoptosis are still not fully understood owing to controversial findings in the literature. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed higher expression levels of TUG1 in people occupationally exposed to arsenic than in individuals living away from the source of arsenic exosure (N = 25). In addition, the results suggested that TUG1 was involved in arsenic-induced apoptosis. Furthermore, knockdown experiments showed that silencing of TUG1 markedly inhibited proliferation, whereas depletion of TUG1 led to increased apoptosis. The TUG1-small interfering RNA (siRNA) combination with arsenic (3 µM/L) slightly increased apoptosis compared with the TUG1-siRNA. Additionally, the knockdown experiments showed that the silencing of TUG1 by siRNA inhibited proliferation and promoted apoptosis by inducing p53, p-p53 (ser392), FAS, BCL2, MDM2, cleaved-caspase7 proteins in 16HBE cells. These results indicated that arsenic mediates the upregulation of TUG1 and induces cell apoptosis via activating the p53 signaling pathway.


Assuntos
Arsênio , MicroRNAs , RNA Longo não Codificante , Humanos , Regulação para Cima , Arsênio/toxicidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Taurina , RNA Longo não Codificante/genética , Epigênese Genética , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Apoptose , Transdução de Sinais , MicroRNAs/genética
19.
Thorac Cancer ; 14(31): 3119-3132, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726969

RESUMO

BACKGROUND: Cell-cell communication by carcinoma-derived exosomes can influence the tumor microenvironment (TME) and regulate cancer progression. Based on the overexpression of microRNA-21-5p (miR-21) in plasma from patients diagnosed with esophageal squamous cell carcinoma (ESCC) and exosomes from ESCC cell lines identified earlier, this study aimed to explore the influence of exosomal miR-21 within the TME. METHOD: ScRNA-Seq and Bulk RNA-Seq were integrated to elucidate the communication between cancer and endothelial cells. The functionality and mechanisms by which exo-miR-21 derived from carcinoma regulate endothelial cell-mediated angiogenesis were assessed using a cocultivation model of EC9706 cells and recipient human umbilical vein endothelial cells (HUVECs), through blood vessel formation experiments, luciferase reporter assays, RT-qPCR, and western blot analysis. RESULT: A total of 3842 endothelial cells were extracted from the scRNA-seq data of ESCC samples and reclustered into five cell subtype. Cell-cell communication analysis revealed cancer cells presented a strong interaction with angiogenesis-like endothelial cells in secreted signaling. MiR-21 was unregulated in ESCC and the carcinoma-derived exo-miR-21 was significantly raised in HUVECs. The exo-miR-21 promoted the proliferation and migration of HUVECs while also enhancing, closed mesh count, and junction number in HUVECs. Mechanistically, dual-luciferase reporter assay revealed that PTEN was the target of miR-21. Meanwhile, p-Akt was significantly increased and suppressed by inhibition of miR-21 and PI3K inhibitor LY294002. CONCLUSION: Exo-miR-21-mediated communication between endothelial and cancer cells plays a pivotal role in promoting the angiogenesis of ESCC. Therefore, controlling exo-miR-21 could serve as a novel therapeutic strategy for ESCC by targeting angiogenesis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Comunicação , Luciferases/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
20.
Chem Commun (Camb) ; 59(72): 10821, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609909

RESUMO

Correction for 'Multiple correlations between spin crossover and fluorescence in a dinuclear compound' by Chun-Feng Wang et al., Chem. Commun., 2016, 52, 14322-14325, https://doi.org/10.1039/C6CC07810A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA