Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273123

RESUMO

Notch signaling is a conserved pathway crucial for nervous system development. Disruptions in this pathway are linked to neurodevelopmental disorders, neurodegenerative diseases, and brain tumors. Hairy/E(spl) (HES) genes, major downstream targets of Notch, are commonly used as markers for Notch activation. However, these genes can be activated, inhibited, or function independently of Notch signaling, and their response to Notch disruption varies across tissues and developmental stages. MIB1/Mib1 is an E3 ubiquitin ligase that enables Notch receptor activation by processing ligands like Delta and Serrate. We investigated Notch signaling disruption using the zebrafish Mib1 mutant line, mib1ta52b, focusing on changes in the expression of Hairy/E(spl) (her) genes. Our findings reveal significant variability in her gene expression across different neural cell types, regions, and developmental stages following Notch disruption. This variability questions the reliability of Hairy/E(spl) genes as universal markers for Notch activation, as their response is highly context-dependent. This study highlights the complex and context-specific nature of Notch signaling regulation. It underscores the need for a nuanced approach when using Hairy/E(spl) genes as markers for Notch activity. Additionally, it provides new insights into Mib1's role in Notch signaling, contributing to a better understanding of its involvement in Notch signaling-related disorders.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Receptores Notch , Transdução de Sinais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurogênese/genética
2.
Stem Cells Dev ; 33(19-20): 540-550, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39001828

RESUMO

Traumatic injury to the spinal cord can lead to significant, permanent disability. Mammalian spinal cords are not capable of regeneration; in contrast, adult zebrafish are capable of such regeneration, fully recovering motor function. Understanding the mechanisms underlying zebrafish neuroregeneration may provide useful information regarding endogenous regenerative potential and aid in the development of therapeutic strategies in humans. DELTEX proteins (DTXs) regulate a variety of cellular processes. However, their role in neural regeneration has not been described. We found that zebrafish dtx2, encoding Deltex E3 ubiquitin ligase 2, is expressed in ependymo-radial glial cells in the adult spinal cord. After spinal cord injury, the heterozygous dtx2 mutant fish motor function recovered quicker than that of the wild-type controls. The mutant fish displayed increased ependymo-radial glial cell proliferation and augmented motor neuron formation. Moreover, her gene expression, downstream of Notch signaling, increased in Dtx2 mutants. Notch signaling inactivation by dominant-negative Rbpj abolished the increased ependymo-radial glia proliferation caused by Dtx2 deficiency. These results indicate that ependymo-radial glial proliferation is induced by Dtx2 deficiency by activating Notch-Rbpj signaling to improve spinal cord regeneration and motor function recovery.


Assuntos
Proliferação de Células , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Medula Espinal , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proliferação de Células/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Neurônios Motores/metabolismo , Transdução de Sinais/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Neuroglia/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Atividade Motora , Regeneração da Medula Espinal , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA