Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899550

RESUMO

Understanding the mechanisms of soil organic carbon (SOC) sequestration in forests is vital to ecosystem carbon budgeting and helps gain insight in the functioning and sustainable management of world forests. An explicit knowledge of the mechanisms driving global SOC sequestration in forests is still lacking because of the complex interplays between climate, soil, and forest type in influencing SOC pool size and stability. Based on a synthesis of 1179 observations from 292 studies across global forests, we quantified the relative importance of climate, soil property, and forest type on total SOC content and the specific contents of physical (particulate vs. mineral-associated SOC) and chemical (labile vs. recalcitrant SOC) pools in upper 10 cm mineral soils, as well as SOC stock in the O horizons. The variability in the total SOC content of the mineral soils was better explained by climate (47%-60%) and soil factors (26%-50%) than by NPP (10%-20%). The total SOC content and contents of particulate (POC) and recalcitrant SOC (ROC) of the mineral soils all decreased with increasing mean annual temperature because SOC decomposition overrides the C replenishment under warmer climate. The content of mineral-associated organic carbon (MAOC) was influenced by temperature, which directly affected microbial activity. Additionally, the presence of clay and iron oxides physically protected SOC by forming MAOC. The SOC stock in the O horizons was larger in the temperate zone and Mediterranean regions than in the boreal and sub/tropical zones. Mixed forests had 64% larger SOC pools than either broadleaf or coniferous forests, because of (i) higher productivity and (ii) litter input from different tree species resulting in diversification of molecular composition of SOC and microbial community. While climate, soil, and forest type jointly determine the formation and stability of SOC, climate predominantly controls the global patterns of SOC pools in forest ecosystems.


Assuntos
Sequestro de Carbono , Carbono , Florestas , Solo , Solo/química , Carbono/análise , Clima , Microbiologia do Solo
2.
Sci Total Environ ; 884: 163792, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127160

RESUMO

Afforestation and reforestation (A&R) are nature-based and cost-effective solutions for enhancing terrestrial carbon sinks and facilitating faster carbon neutrality. However, the lack of hierarchical spatial-temporal maps for the carbon sequestration rate (CSR) from A&R at the national scale impedes the scientific implementation of forest management planning to a large extent. Here, we assessed the spatial-temporal CSR per area for A&R at the provincial, prefectural, and county levels in China using a forest carbon sequestration model under three climate scenarios. Results showed that the CSR of vegetation (CSRVeg), soil (CSRSoil), and the ecosystem (CSREco) significantly varied across space and time. In China, the CSRVeg, CSRSoil, and CSREco were primarily regulated by the spatial variations in temperature and precipitation. Additionally, CSRVeg was found to be positively influenced by precipitation and temperature, whereas temperature had a negative influence on CSRSoil. Therefore, the differences between the CSRVeg and CSRSoil should be emphasized in the future. These information on the spatiotemporal variation of CSR of A&R (vegetation, soil, and ecosystem) on unit area basis and at levels of province, prefecture, and county in China, can be used as a comparable protocol to estimate the carbon sinks of A&R at different scales. Overall, these hierarchical spatiotemporal maps for CSR on A&R may help to identify priority areas of forest management planning and carbon trade policy to achieve faster carbon neutrality for China in the future.


Assuntos
Sequestro de Carbono , Ecossistema , Carbono/análise , Florestas , China , Solo
3.
Sci Bull (Beijing) ; 67(8): 836-843, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546236

RESUMO

Forestation is important for sequestering atmospheric carbon, and it is a cost-effective and nature-based solution (NBS) for mitigating global climate change. Here, under the assumption of forestation in the potential plantable lands, we used the forest carbon sequestration (FCS) model and field survey involving 3365 forest plots to assess the carbon sequestration rate (CSR) of Chinese existing and new forestation forests from 2010 to 2060 under three forestation and three climate scenarios. Without considering the influence of extreme events and human disturbance, the estimated average CSR in Chinese forests was 0.358 ± 0.016 Pg C a-1, with partitioning to biomass (0.211 ± 0.016 Pg C a-1) and soil (0.147 ± 0.005 Pg C a-1), respectively. The existing forests account for approximately 93.5% of the CSR, which will peak near 2035, and decreasing trend was present overall after 2035. After 2035, effective tending management is required to maintain the high CSR level, such as selective cutting, thinning, and approximate disturbance. However, new forestation from 2015 in the potential plantable lands would play a minimal role in additional CSR increases. In China, the CSR is generally higher in the Northeast, Southwest, and Central-South, and lower in the Northwest. Considering the potential losses through deforestation and logging, it is realistically estimated that CSR in Chinese forests would remain in the range of 0.161-0.358 Pg C a-1 from 2010 to 2060. Overall, forests have the potential to offset 14.1% of the national anthropogenic carbon emissions in China over the period of 2010-2060, significantly contributing to the carbon neutrality target of 2060 with the implementation of effective management strategies for existing forests and expansion of forestation.


Assuntos
Sequestro de Carbono , Florestas , Biomassa , Carbono/análise , China
4.
Sci Total Environ ; 802: 149643, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461482

RESUMO

Southwest China is an important biodiversity hotspot in the world and is controlled by the Pacific and Indian Ocean monsoon in the east and west part respectively. However, how abiotic and biotic factors affect the response of vegetation to climate change in different monsoon regions is still not clear. Here we used the annual change rate of growing-season normalized difference vegetation index (NDVI trend) during 1982-2015 to explore the vulnerability of vegetation (forests and shrubs) activity to climate change in southwest China. We examined NDVI trend in relation to: 1) climate change trends, i.e. annual change rate of water and energy availability, indicated by the Palmer Drought Index (PDSI) and potential evapotranspiration (PET), respectively; 2) climatic condition, i.e. mean PDSI and PET during 1982-2015; 3) vegetation height; 4) biome type; 5) monsoon region. The results showed that NDVI generally increased in the Pacific monsoon region, especially in the southern areas, probably because the vegetation under more productive climate were more resistant to climate change, and also because decreased temperature lead to lower evapotranspiration which alleviated the slight drought trend in this region. In contrast, NDVI generally decreased in the Indian Ocean monsoon region which showed more pronounced drought trend, especially in the tall subalpine and tropical forests of Southeast Tibetan Mountains, which supports the "hydraulic limitation hypothesis" that vegetation height interacted with climate change in affecting vegetation vulnerability. Our analysis highlighted the critical roles of different monsoon systems, climate condition and vegetation height in affecting ecosystem vulnerability. We suggest that the (sub)tropical forests in the Pacific monsoon region may have act as an important carbon sink during the past decades, while the tall forests in Southeast Tibetan mountains (a biodiversity center with high carbon stock) are highly vulnerable to climate change and should have priority in ecosystem protection.


Assuntos
Mudança Climática , Ecossistema , China , Secas , Florestas
5.
Sci Total Environ ; 792: 148290, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153752

RESUMO

Understanding changes in ecosystem services and their drivers is important for effective riparian ecosystem conservation and restoration. In the study, changes in water-related ecosystem services (soil conservation, water purification, and water yield) from 2007 to 2015 in Liaohe River Reserve, China were analyzed using the Integrated Valuation of Ecosystem Services and Trade-offs model. Impacts of landscape patterns on ecosystem services for different stages of restoration, i.e., farmland abandonment and natural succession stages were determined by stepwise regression analysis, respectively. The results showed that landscape fragmentation, landscape diversity, farmland fragmentation and grassland aggregation increased at the farmland abandonment stage. Landscape aggregation and diversity increased, whereas farmland fragmentation and grassland fragmentation decreased at the natural succession stage. Water-related ecosystem services improved since farmland abandonment, but water yield decreased from 1.57 × 106 m3 to 1.47 × 106 m3 at natural succession stage from 2011 to 2015. Water yield dynamics both at farmland abandonment and natural restoration stages were not significantly associated with landscape metrics. Dynamics of soil retention and water purification services at the farmland abandonment stage were significantly affected by landscape patch numbers, farmland division, and grassland aggregation. Interspersion and juxtaposition between different patch types, farmland edge density, grassland division, and grassland aggregation played significant roles in the dynamics of soil retention and water purification services at the natural restoration stage. The results provide scientific guidance for riparian management at the landscape scale to better restore water-related ecosystem services.


Assuntos
Ecossistema , Rios , China , Solo , Água/análise
6.
Ecol Evol ; 11(10): 5281-5294, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026006

RESUMO

Ectomycorrhizal (ECM) symbiosis is an evolutionary biological trait of higher plants for effective nutrient uptakes. However, little is known that how the formation and morphological differentiations of ECM roots mediate the nutrients of below- and aboveground plant tissues and the balance among nutrient elements across environmental gradients. Here, we investigated the effects of ECM foraging strategies on root and foliar N and P concentrations and N:P ratio Abies faxoniana under variations of climate and soil conditions.The ECM symbionts preferentially mediated P uptake under both N and P limitations. The uptake efficiency of N and P was primarily associated with the ECM root traits, for example, ECM root tip density, superficial area of ECM root tips, and the ratio of living to dead root tips, and was affected by the ECM proliferations and morphological differentiations. The tissue N and P concentrations were positively associated with the abundance of the contact exploration type and negatively with that of the short-distance exploration type.Our findings indicate that the nutritional status of both below- and aboveground plant tissues can be strongly affected by ECM symbiosis in natural environments. Variations in the ECM strategies in response to varying environmental conditions significantly influence plant nutrient uptakes and trade-offs.

7.
Sci Rep ; 8(1): 2228, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396551

RESUMO

The study aimed to identify the lateral heterogeneity of soil physicochemical properties in riparian zones, and its underlying drivers during natural restoration after agricultural abandonment. Abandoned farmlands, after 5-year natural restoration, within 500 m from the edges on both sides of Liaohe River were selected as the study area. Soil physicochemical properties of four lateral buffers (<10 m, 10~100 m, 100~300 m, and >300 m from river edge, respectively) along riparian zones were measured. The results showed that riparian soils were characterized by high sand content (78.88%~96.52%) and poor soil nutrients. Soil silt content, organic carbon (OC), cation exchange capacity (CEC), total nitrogen (TN), and available nitrogen (AN) increased laterally with increasing distance from river edge, while soil sand content decreased. Total phosphorus (TP) and available phosphorus (AP) are not spatially autocorrelated. Soil OC, TN, AN, and CEC along upstream and midstream reaches showed negative spatial autocorrelation along the lateral gradients, and positive along downstream reach. Altitude, distance from river edge and distance from nearest farmland were the pronounced factors affecting soil physicochemical properties in this study.

8.
Ecol Evol ; 8(2): 879-891, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375762

RESUMO

How biotic and abiotic factors influence soil carbon (C) mineralization rate (RS) has recently emerged as one of the focal interests in ecological studies. To determine the relative effects of temperature, soil substrate and microbial community on Rs, we conducted a laboratory experiment involving reciprocal microbial inoculations of three zonal forest soils, and measured RS over a 61-day period at three temperatures (5, 15, and 25°C). Results show that both Rs and the cumulative emission of C (Rcum), normalized to per unit soil organic C (SOC), were significantly affected by incubation temperature, soil substrate, microbial inoculum treatment, and their interactions (p < .05). Overall, the incubation temperature had the strongest effect on the RS; at given temperatures, soil substrate, microbial inoculum treatment, and their interaction all significantly affected both Rs (p < .001) and Rcum (p ≤ .01), but the effect of soil substrate was much stronger than others. There was no consistent pattern of thermal adaptation in microbial decomposition of SOC in the reciprocal inoculations. Moreover, when different sources of microbial inocula were introduced to the same soil substrate, the microbial community structure converged with incubation without altering the overall soil enzyme activities; when different types of soil substrate were inoculated with the same sources of microbial inocula, both the microbial community structure and soil enzyme activities diverged. Overall, temperature plays a predominant role in affecting Rs and Rcum, while soil substrate determines the mineralizable SOC under given conditions. The role of microbial community in driving SOC mineralization is weaker than that of climate and soil substrate, because soil microbial community is both affected, and adapts to, climatic factors and soil matrix.

9.
Sci Rep ; 6: 22411, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26925871

RESUMO

Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.


Assuntos
Ciclo do Carbono/fisiologia , Florestas , Quercus/microbiologia , Solo/química , Árvores/microbiologia , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Microbiota , Quercus/classificação , Microbiologia do Solo , Árvores/classificação
10.
Environ Manage ; 52(3): 748-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23811774

RESUMO

Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.


Assuntos
Biodiversidade , Recuperação e Remediação Ambiental/métodos , Plantas , Solo/química , Biomassa , China , Resíduos Industriais , Mineração
11.
PLoS One ; 7(7): e41764, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848593

RESUMO

BACKGROUND: Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. CONCLUSIONS/SIGNIFICANCE: Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and specificity responses of invertebrates.


Assuntos
Clima , Aquecimento Global , Gafanhotos/crescimento & desenvolvimento , Poaceae , Animais , Ambiente Controlado , Feminino , Fertilidade , Gafanhotos/fisiologia , Ninfa/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Estações do Ano , Especificidade da Espécie , Fatores de Tempo
12.
Oecologia ; 162(3): 771-80, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19921269

RESUMO

Nitrogen availability is critically important to litter decomposition, especially in arid and semiarid areas where N is limiting. We studied the relative contributions of litter quality and soil N to litter decomposition of two dominant grassland species, Stipa krylovii and Artemisia frigida, in a semiarid typical steppe ecosystem in Inner Mongolia, China. The study had four different rates of N addition (0, 8, 32, and 64 g N m(-2) year(-1)), and litter samples were decomposed under varying site conditions and by litter types. Litter-mixing effects of the two species were also examined. We found that N addition increased litter N concentration and thus enhanced litter decomposition by improving substrate quality. This increase, however, was offset by the negative effect of increased soil N, resulting in a diminished effect of increased soil N availability on in situ litter decomposition. The positive effects of improved litter quality slightly out-performed the negative effects of increased soil N. Our further analysis revealed that the negative effect of increasing soil N on litter decomposition could be partially explained by reduced soil microbial biomass and activity. Decomposition was significantly faster for litters of a two-species mixture than litters of the single species, but the rate of litter decomposition did not differ much between the two species, suggesting that compositional balance, rather than changes in the dominance between Stipa and Artemisia, is more critical for litter decomposition, hence nutrient cycling in this ecosystem. This semiarid steppe ecosystem may become more conservative in nutrient use with switching of dominance from Artemisia to Stipa with increasing soil N, because Stipa has a slower decomposition rate and a higher nutrient retention rate than Artemisia.


Assuntos
Ecossistema , Nitrogênio/química , Poaceae , Solo/análise
13.
J Integr Plant Biol ; 50(2): 210-20, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18713444

RESUMO

Both the photosynthetic light curves and CO(2) curves of Juglans regia L. and Ziziphus jujuba Mill. var. spinosa in three seasons were measured using a LI-6400 portable photosynthesis system. The maximal net photosynthetic rate (A(max)), apparent quantum efficiency(phi), maximal carboxylation rate (V(cmax)) and water use efficiency (WUE) of the two species were calculated based on the curves. The results showed that A(max) of J. regia reached its maximum at the late-season, while the highest values of A(max) of Z. jujuba occurred at the mid-season. The A(max) of J. regia was more affected by relative humidity (RH) of the atmosphere, while that of Z. jujuba was more affected by the air temperature. Light saturation point (LSP) and Light compensation point (LCP) of J. regia had a higher correlation with RH of the atmosphere, those of Z. jujuba, however, had a higher correlation with air temperature. V(cmax) of both J. regia and Z. jujuba had negative correlation with RH of the atmosphere. WUE of J. regia would decrease with the rise of the air temperature while that of Z. jujuba increased. Thus it could be seen that RH, temperature and soil moisture had main effect on photosynthesis and WUE of J. regia and Z. jujuba. Incorporating data on the physiological differences among tree species into forest carbon models will greatly improve our ability to predict alterations to the forest carbon budgets under various environmental scenarios such as global climate change, or with differing species composition.


Assuntos
Meio Ambiente , Juglans/fisiologia , Fotossíntese , Estações do Ano , Água/metabolismo , Ziziphus/fisiologia , Dióxido de Carbono/metabolismo , Juglans/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Análise de Regressão , Ziziphus/efeitos da radiação
14.
Philos Trans R Soc Lond B Biol Sci ; 362(1482): 997-1008, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17317645

RESUMO

Grasslands are the dominant landscape in China, accounting for 40% of the national land area. Research concerning China's grassland ecosystems can be chronologically summarized into four periods: (i) pre-1950s, preliminary research and survey of grassland vegetation and plant species by Russians, Japanese and Western Europeans, (ii) 1950-1975, exploration and survey of vegetation, soils and topography as part of natural resource inventory programmes by regional and national institutions mainly led by the Chinese Academy of Sciences, (iii) 1976-1995, establishment of field stations for long-term ecological monitoring and studies of ecosystem processes, (iv) 1996-present, comprehensive studies of community dynamics and ecosystem function integrating multi-scale and multidisciplinary approaches and experimental manipulations. Major findings of scientific significance in China's grassland ecosystem research include: (i) improved knowledge on succession and biogeochemistry of the semi-arid and temperate grassland ecosystems, (ii) elucidation of life-history strategies and diapause characteristics of the native grasshopper species as one of the key grassland pests, and (iii) development of effective management strategies for controlling rodent pests in grassland ecosystems. Opportunities exist for using the natural grasslands in northern China as a model system to test ecosystem theories that so far have proven a challenge to ecologists worldwide.


Assuntos
Ecossistema , Poaceae/fisiologia , Pesquisa/tendências , China , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA