Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273581

RESUMO

Cancer continues to be a major global health issue, ranking among the top causes of death worldwide. To develop novel antitumor agents, this study focused on the synthesis of a series of 21 novel furanopyridinone derivatives through structural modifications and functional enhancements. The in vitro anti-tumor activities of these compounds were investigated through the cytotoxicity against KYSE70 and KYSE150 and led to the identification of compound 4c as the most potent compound. At a concentration of 20 µg/mL, compound 4c demonstrated a remarkable 99% inhibition of KYSE70 and KYSE150 cell growth after 48 h. IC50 was 0.655 µg/mL after 24 h. Additionally, potential anti-tumor cellular mechanisms were explored through molecular docking, which was used to predict the binding mode of 4c with METAP2 and EGFR, suggesting that the C=O part of the pyridone moiety likely played a crucial role in binding. This study provided valuable insights and guidance for the development of novel anticancer drugs with novel structural scaffolds.


Assuntos
Antineoplásicos , Proliferação de Células , Neoplasias Esofágicas , Simulação de Acoplamento Molecular , Piridonas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Piridonas/farmacologia , Piridonas/química , Piridonas/síntese química , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos
2.
Chem Biodivers ; 21(5): e202400311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494946

RESUMO

Phytopathogenic fungi is the most devastating reason for the decrease of the agricultural production and food safety. To develop new fungicidal agents for resistance concerning, a novel series of aminocoumarin derivatives were synthesized and their fungicidal activity were investigated both in vitro and in vivo. Transmission electron microscope (TEM), scanning electron microscope (SEM), RNA-Seq, 3D-QSAR and molecular docking were applied to reveal the underlying anti-fungal mechanisms. Most of the compounds exhibited significant fungicidal activity. Notably, compound 10c had a more extensive fungicidal effect than positive control. TEM indicated that compound 10c could cause abnormal morphology of cell walls, vacuoles and release of cellular contents. Transcriptional analysis data indicated that 895 and 653 out of 1548 differential expressed genes (DEGs) were up-regulated and down-regulated respectively. The Go and KEGG enrichment indicated that the coumarin derivatives could induce significant changes of succinate dehydrogenase (SDH), Acetyl-coenzyme A synthetase (ACCA) and pyruvate dehydrogenase (PDH) genes, which contributed to the disorders of glucolipid metabolism and the dysfunction of mitochondrial. The results demonstrated that aminocoumarins with schiff-base as core moieties could be the promising lead compounds for the discovery of novel fungicides.


Assuntos
Cumarínicos , Desenho de Fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Relação Quantitativa Estrutura-Atividade , Botrytis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA