Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39159023

RESUMO

Auditory Brainstem Response (ABR) is an evoked potential in the brainstem's neural centers in response to sound stimuli. Clinically, characteristic waves, especially Wave V latency, extracted from ABR can objectively indicate auditory loss and diagnose diseases. Several methods have been developed for the extraction of characteristic waves. To ensure the effectiveness of the method, most of the methods are time-consuming and rely on the heavy workloads of clinicians. To reduce the workload of clinicians, automated extraction methods have been developed. However, the above methods also have limitations. This study introduces a novel deep learning network for automatic extraction of Wave V latency, named ABR-Attention. ABR-Attention model includes a self-attention module, first and second-derivative attention module, and regressor module. Experiments are conducted on the accuracy with 10-fold cross-validation, the effects on different sound pressure levels (SPLs), the effects of different error scales and the effects of ablation. ABR-Attention shows efficacy in extracting Wave V latency of ABR, with an overall accuracy of 96.76 ± 0.41 % and an error scale of 0.1ms, and provides a new solution for objective localization of ABR characteristic waves.


Assuntos
Algoritmos , Aprendizado Profundo , Potenciais Evocados Auditivos do Tronco Encefálico , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Humanos , Masculino , Atenção/fisiologia , Estimulação Acústica , Redes Neurais de Computação , Feminino , Adulto , Reprodutibilidade dos Testes , Adulto Jovem , Tempo de Reação/fisiologia , Eletroencefalografia/métodos
2.
IEEE J Biomed Health Inform ; 28(7): 3872-3881, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954558

RESUMO

Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.


Assuntos
Eletroencefalografia , Emoções , Processamento de Sinais Assistido por Computador , Humanos , Eletroencefalografia/métodos , Emoções/fisiologia , Redes Neurais de Computação , Aprendizado de Máquina , Algoritmos , Reconhecimento Automatizado de Padrão/métodos , Bases de Dados Factuais , Adulto , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA