Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(3): 3021-3042, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309292

RESUMO

Depression is a neurological disorder that profoundly affects human physical and mental health, resulting in various changes in the central nervous system. Despite several prominent hypotheses, such as the monoaminergic theory, hypothalamic-pituitary-adrenal (HPA) axis theory, neuroinflammation, and neuroplasticity, the current understanding of depression's pathogenesis remains incomplete. Importantly, depression is a gender-dimorphic disorder, with women exhibiting higher incidence rates than men. Given estrogen's pivotal role in the menstrual cycle, it is reasonable to postulate that its fluctuating levels could contribute to the pathogenesis of depression. Estrogen acts by binding to a diversity of receptors, which are widely distributed in the central nervous system. An abundance of research has established that estrogen and its receptors play a crucial role in depression, spanning pathogenesis and treatment. In this comprehensive review, we provide an in-depth analysis of the fundamental role of estrogen and its receptors in depression, with a focus on neuroinflammation, neuroendocrinology, and neuroplasticity. Furthermore, we discuss potential mechanisms underlying the therapeutic effects of estrogen in the treatment of depression, which may pave the way for new antidepressant drug development and alternative treatment options.


Assuntos
Depressão , Doenças Neuroinflamatórias , Masculino , Feminino , Humanos , Depressão/tratamento farmacológico , Estrogênios/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
2.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630313

RESUMO

Typically, the formation of vesicles requires the addition of salts or other additives to surfactant micelles. However, in the case of catanionic surfactants, unilamellar vesicles can spontaneously form upon dilution of the micellar solutions. Our study explores the intriguing spontaneous vesicle-to-micelle transition in catanionic surfactant systems, specifically cetyltrimethyl ammonium bromide (CTAB) and sodium octylsulfonate (SOS). To gain insights into the changes occurring at the interface, we employ a chemical trapping method to characterize variations in the molarities of sulfonate headgroups, water, and bromide ions during the transition. Our findings reveal the formation of ion pairs between the cationic component of CTAB and the anionic component of SOS, leading to tight interfacial packing in CTAB/SOS solutions. This interfacial packing promotes vesicle formation at low surfactant concentrations. Due to the significant difference in critical micelle concentration (cmc) between CTAB and SOS, an increase in the stoichiometric surfactant concentration results in a substantial rise in the SOS-to-CTAB ratio within the interfacial region. This enrichment of SOS in the aggregates triggers the transition from vesicles to micelles. Overall, our study may shed new light on the design of morphologies in catanionic and other surfactant systems.

3.
Neural Regen Res ; 18(9): 2075-2081, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36926734

RESUMO

Recent studies have shown that a 9-hour fast in mice reduces the amount of time spent immobile in the forced swimming test. However, whether 9-hour fasting has therapeutic effects in female mice with depressive symptoms has not been established. Therefore, in this study, we simulated perimenopausal depression via an ovariectomy in mice, and subjected them to a single 9-hour fasting 7 days later. We found that the ovariectomy increased the time spent immobile in the forced swimming test, inhibited expression of the mammalian target of rapamycin complex 1 signaling pathway in the hippocampus and prefrontal cortex, and decreased the density of dendritic spines in the hippocampus. The 9-hour acute fasting alleviated the above-mentioned phenomena. Furthermore, all of the antidepressant-like effects of 9-hour fasting were reversed by an inhibitor of the mammalian target of rapamycin complex 1. Electrophysiology data showed a remarkable increase in long-term potentiation in the hippocampal CA1 of the ovariectomized mice subjected to fasting compared with the findings in the ovariectomized mice not subjected to fasting. These findings show that the antidepressant-like effects of 9-hour fasting may be related to the activation of the mammalian target of the rapamycin complex 1 signaling pathway and synaptic plasticity in the mammalian hippocampus. Thus, fasting may be a potential treatment for depression.

4.
J Cell Mol Med ; 26(19): 4875-4885, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36065764

RESUMO

Academics generally believe that imbalance between excitation and inhibition of the nervous system is the root cause of epilepsy. However, the aetiology of epilepsy is complex, and its pathogenesis remains unclear. Many studies have shown that epilepsy is closely related to genetic factors. Additionally, the involvement of a variety of tumour-related transcription factors in the pathogenesis of epilepsy has been confirmed, which also confirms the heredity of epilepsy. In this review, we summarize the existing research on a variety of transcription factors and epilepsy and present relevant evidence related to transcription factors that may be targets in epilepsy. This information is of great significance for revealing the in-depth molecular and cellular mechanisms of epilepsy.


Assuntos
Epilepsia , Fatores de Transcrição , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Fatores de Transcrição/genética
5.
Molecules ; 27(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889205

RESUMO

In recent years, there has been increasing interest in daily-use chemical products providing a pleasant scent. The added fragrance molecules may induce microstructural transitions of surfactant aggregates, which further affect the physical and chemical properties of the products. Here, the effects of four types of aromatic alcohols (cinnamyl alcohol, phenyl ethanol, phenyl methanol and anisyl alcohol) on cetyltrimethylammonium bromide (CTAB)/KBr aggregates were studied. The combined results from rheology, dynamic light scattering, and transmission electron microscopy measurements showed that cinnamyl alcohol induced significant micellar growth, while increases in micellar growth were less obvious for the other aromatic alcohols. The changes in the interfacial molarities of water, aromatic alcohol, and bromide ions during such transitions were studied using the chemical trapping method. Transitions resulting from added cinnamyl alcohol were accompanied by significant declines in interfacial water and bromide ion molarities, and a rise in interfacial alcohol molarity. The marked decrease in interfacial water molarity was not observed in previous studies of the octanol induced formation of wormlike micelles and vesicles, indicating that a different mechanism was presented in the current system. Nuclear magnetic resonance investigation showed that π-π stacking between cinnamyl alcohols, but not cation-π interactions between alcohols and CTAB headgroups, facilitated the tight packing of alcohol molecules in CTAB aggregates and the repulsion of water from the interfacial region. The current study may provide a theoretical basis for the morphological regulation of surfactant aggregates in the presence of additives.


Assuntos
Surfactantes Pulmonares , Tensoativos , Brometos , Cetrimônio , Compostos de Cetrimônio/química , Excipientes , Micelas , Odorantes , Tensoativos/química , Água/química
6.
Front Pharmacol ; 13: 845591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668943

RESUMO

Berberine, as a natural alkaloid compound, is characterized by a diversity of pharmacological effects. In recent years, many researches focused on the role of berberine in central nervous system diseases. Among them, the effect of berberine on neurodegenerative diseases has received widespread attention, for example Alzheimer's disease, Parkinson's disease, Huntington's disease, and so on. Recent evidence suggests that berberine inhibits the production of neuroinflammation, oxidative, and endoplasmic reticulum stress. These effects can further reduce neuron damage and apoptosis. Although the current research has made some progress, its specific mechanism still needs to be further explored. This review provides an overview of berberine in neurodegenerative diseases and its related mechanisms, and also provides new ideas for future research on berberine.

7.
Front Neurol ; 10: 1149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798512

RESUMO

Traumatic brain injury, a common cause of acquired epilepsy, is typical to find necrotic cell death within the injury core. The dynamic changes in astrocytes surrounding the injury core contribute to epileptic seizures associated with intense neuronal firing. However, little is known about the molecular mechanisms that activate astrocytes during traumatic brain injury or the effect of functional changes of astrocytes on seizures. In this comprehensive review, we present our cumulated understanding of the complex neurological affection in astrocytes after traumatic brain injury. We approached the problem through describing the changes of cell morphology, neurotransmitters, biochemistry, and cytokines in astrocytes during post-traumatic epilepsy. In addition, we also discussed the relationship between dynamic changes in astrocytes and seizures and the current pharmacologic agents used for treatment. Hopefully, this review will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat post-traumatic epilepsy.

8.
Nat Biomed Eng ; 1: 724-735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204310

RESUMO

Detection of nuclear biomarkers such as nucleic acids and nuclear proteins is critical for early-stage cancer diagnosis and prognosis. Conventional methods relying on morphological assessment of cell nuclei in histopathology slides may be subjective, whereas colorimetric immunohistochemical and fluorescence-based imaging are limited by strong light absorption, broad-emission bands and low contrast. Here, we describe the development and use of a scanning laser-emission-based microscope that maps lasing emissions from nuclear biomarkers in human tissues. 41 tissue samples from 35 patients labelled with site-specific and biomarker-specific antibody-conjugated dyes were sandwiched in a Fabry-Pérot microcavity while an excitation laser beam built a laser-emission image. We observed multiple sub-cellular lasing emissions from cancer cell nuclei, with a threshold of tens of µJ/mm2, sub-micron resolution (<700 nm), and a lasing band in the few-nanometre range. Different lasing thresholds of nuclei in cancer and normal tissues enabled the identification and multiplexed detection of nuclear proteomic biomarkers, with a high sensitivity for early-stage cancer diagnosis. Laser-emission-based cancer screening and immunodiagnosis might find use in precision medicine and facilitate research in cell biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA