RESUMO
BACKGROUND: Irinotecan administration can lead to severe delayed-onset diarrhea (SDOD) in clinical practice. Currently, there is no reliable surrogate predictor of intestinal exposure to SN-38 and subsequent diarrhea incidence. METHODS: The relationship between fecal 7-ethyl-10-hydroxycamptothecin (SN-38) content and SDOD was investigated in Fisher 344 rats using a novel spectrofluorimetric method. Additionally, a pharmacokinetic study of irinotecan was performed to evaluate the biodistribution of SN-38 to establish the relationship between tissue and fecal SN-38 exposure. RESULTS: The spectrofluorimetric method was successfully employed to measure fecal SN-38 and CPT-11 content from Day 3 to Day 6 post-irinotecan administration. Only fecal SN-38 content on Day 3 exhibited a significantly positive correlation with SDOD incidence on Days 4 and 5. A cutoff value of SN-38 ≥ 0.066 mg/g in feces was identified, predicting severe diarrhea incidence with 81% accuracy and 80% specificity. The positive correlation between fecal SN-38 content and SN-38 exposure in the ileum on Day 3 was also reflected in the changes of indicators during intestinal injury, such as prostaglandin E2 level and antioxidant activity. CONCLUSION: Fecal SN-38 content proves to be representative of intestinal exposure to SN-38, indicative of intestinal injury, and predictive of SDOD incidence in rats, while the spectrofluorimetric method demonstrates the translational potential.
Assuntos
Camptotecina , Diarreia , Fezes , Irinotecano , Ratos Endogâmicos F344 , Animais , Irinotecano/farmacocinética , Irinotecano/efeitos adversos , Diarreia/induzido quimicamente , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Camptotecina/análise , Camptotecina/efeitos adversos , Fezes/química , Masculino , Ratos , Espectrometria de Fluorescência/métodos , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/análise , Distribuição Tecidual , Mucosa Intestinal/metabolismoRESUMO
Irinotecan-induced severe diarrhea (IISD) not only limits irinotecan's application but also significantly affects patients' quality of life. However, existing animal models often inadequately represent the dynamics of IISD development, progression, and resolution across multiple chemotherapy cycles, yielding non-reproducible and highly variable response with limited clinical translation. Our studies aim to establish a reproducible and validated IISD model that better mimics the pathophysiology progression observed in patients, enhancing translational potential. We investigated the impact of dosing regimens (including different dose, infusion time, and two cycles of irinotecan administration), sex, age, tumor-bearing conditions, and irinotecan formulation on the IISD incidence and severity in mice and rats. Lastly, we investigated above factors' impact on pharmacokinetics of irinotecan, intestinal injury, and carboxylesterase activities. In summary, we successfully established a standard model establishment procedure for an optimized IISD model with highly reproducible severe diarrhea incidence rate (100%) and a low mortality rate (11%) in F344 rats. Additionally, the rats tolerated at least two cycles of irinotecan chemotherapy treatment. In contrast, the mouse model exhibited suboptimal IISD incidence rates (60%) and an extremely high mortality rate (100%). Notably, dosing regimen, age and tumor-bearing conditions of animals emerged as critical factors in IISD model establishment. In conclusion, our rat IISD model proves superior in mimicking pathophysiology progression and characteristics of IISD in patients, which stands as an effective tool for mechanism and efficacy studies in future chemotherapy-induced gut toxicity research.
Assuntos
Diarreia , Modelos Animais de Doenças , Irinotecano , Ratos Endogâmicos F344 , Irinotecano/toxicidade , Animais , Diarreia/induzido quimicamente , Masculino , Feminino , Camundongos , Ratos , Índice de Gravidade de Doença , Relação Dose-Resposta a Droga , Humanos , Reprodutibilidade dos TestesRESUMO
To identify additional genetic markers contributing to variability in CPT-11 disposition and toxicity, we assessed impact of the multiple drug-resistant transporters 1, 2, and 3 (MRP1, MRP2, and MRP3) on the intestinal toxicity, pharmacokinetics, tissue distribution and biliary excretion of CPT-11 using a knockout mouse model. Mrp1/3 knockout had minor impact on intestinal toxicity of CPT-11, tissue distribution, biliary excretion, and PK parameter of its active metabolites SN38. Conversely, Mrp2-/- mice, with low carboxylesterase activity, displayed insensitivity to CPT-11 toxicity due to reduced intestinal exposure to SN38. In PK studies, Mrp1/2 knockout significantly increased the AUC of CPT-11 compared to their AUC in FVB mice. However, the AUC of SN38 in Mrp2 -/- mice was decreased by 3.25-fold. Mrp3 knockout only slightly increased SN38 plasma exposure. Lastly, Mrp2/3 knockout increased biliary excretion amount of CPT-11 by 67.2% and 48.5% compared to wild-type mice, respectively. Consequently, Mrp1/3 deficiency didn't change SN38 tissue distribution. Finally, correlation analysis demonstrated that tissue exposure to SN38 was better correlated with toxicity than plasma AUC of SN38. Mrp1/2/3 deficiency showed a minor impact on PK, biliary excretion, distribution and intestinal exposure of SN38, and as a result, did not affect the intestinal toxicity of CPT-11.
Assuntos
Camptotecina , Intestinos , Camundongos , Animais , Irinotecano , Camptotecina/toxicidade , Distribuição TecidualRESUMO
BACKGROUND: Irinotecan (CPT-11, Camptosar@) is a first-line drug for metastatic colorectal cancer. CPT-11-induced diarrhea, which is closely related to the concentrations of ß-glucuronidase (ß-GUS) and SN-38 in the gut, largely limits its clinical application. PURPOSE: Herein, Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese formula, was applied to mitigate CPT-11-induced toxicity. This study initially explored the mechanism by which XCHT alleviated diarrhea, especially for ß-GUS from the gut microbiota. METHODS: First, we examined the levels of the proinflammatory cytokines and the anti-inflammatory cytokines in the intestine. Furthermore, we researched the community abundances of the gut microbiota in the CPT-11 and XCHT-treated mice based on 16S rRNA high-throughput sequencing technology. Meanwhile, the level of SN-38 and the concentrations of ß-GUS in intestine were examined. We also resolved the 3D structure of ß-GUS from gut microbiota by X-ray crystallography technology. Moreover, we used virtual screening, SPR analysis, and enzyme activity assays to confirm whether the main active ingredients from XCHT could selectively inhibit ß-GUS. RESULTS: In XCHT-treated mice, the levels of the proinflammatory cytokines decreased, the anti-inflammatory cytokines increased, and the community abundances of beneficial Firmicutes and Bacteroidota improved in the gut microbiota. We also found that the concentrations of ß-GUS and the level of SN-38, the major ingredient that induces diarrhea in the gut, significantly decreased after coadministration of XCHT with CPT-11 in the intestine. Additionally, we revealed the structural differences of ß-GUS from different gut microbiota. Finally, we found that EcGUS had good affinity with baicalein and meanwhile could be selectively inhibited by baicalein from XCHT. CONCLUSIONS: Overall, XCHT could relieve the delayed diarrhea induced by CPT-11 through improving the abundance of beneficial gut microbiota and reduced inflammation. Furthermore, based on the three-dimensional structure, baicalein, especially, could be used as a candidate EcGUS inhibitor to alleviate CPT-11-induced diarrhea.
Assuntos
Microbioma Gastrointestinal , Glucuronidase , Animais , Camundongos , Irinotecano , RNA Ribossômico 16S/genética , Citocinas , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológicoRESUMO
BACKGROUND: Chemotherapeutic drugs used in cancer treatment often result in gastrointestinal toxicity, notably diarrhea, impacting patients' quality of life. Complementary and Alternative Medicine (CAM) has garnered increasing interest as an alternative to conventional approaches as a potential solution for managing chemotherapyinduced diarrhea (CID). OBJECTIVE: To summarize current research focusing on herbal medicines as adjuvant therapy to prevent or treat chemotherapy-induced diarrhea, including clinical assessments, mechanism of actions, active components, and potential pharmacokinetic interactions between herbal medicines and chemotherapeutic drugs. METHODS: We performed the literature review from PubMed, CNKI, Google Scholar, Web of Science, and Scopus using "Chemotherapy", "Diarrhea," and "Complementary and Alternative Medicine" as the search keywords. RESULTS: Using herbal medicines as adjuvants provides an effective approach to treating or preventing CID with improved or unaffected antitumor activity of chemotherapeutic drugs. Among these herbal formulations, scutellaria, ginger, and ginseng are the most frequently used herbs in the prescriptions for CID. The main antidiarrheal components in herbs include wogonin, baicalin, chrysin, quercetin, gingerol, and ginsenosides. These herbs, formulations, and bioactive components relieved CID through different mechanisms, including directly decreasing local drug exposure, anti-inflammation, inhibiting epithelial apoptosis, or promoting epithelium stem cell regeneration. The application of herbal medicines as adjunctive therapies showed efficacy in preventing or treating CID in multiple clinical trials. However, more well-designed clinical studies are expected to validate the results further. Despite some clinical studies demonstrating that certain herbal medicines could potentially attenuate CID and improve efficacy, it remains necessary to evaluate herbal safety. The interactions between herbs and drugs are also potential concerns, but few clinical trials have focused on investigating this aspect. CONCLUSION: In clinical practise, herbal medications show potential as adjuvant treatments for gastrointestinal toxicities induced by chemotherapy, particularly diarrhoea. Further well-designed clinical studies are needed to validate their efficacy, ensure safety, and explore potential drug-herb interactions.
Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Gastroenteropatias , Plantas Medicinais , Humanos , Qualidade de Vida , Medicamentos de Ervas Chinesas/farmacologia , Gastroenteropatias/tratamento farmacológico , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , FitoterapiaRESUMO
Mycophenolate mofetil (MMF) is a prodrug of mycophenolic acid (MPA) used to prevent rejection in organ transplant patients. The purpose of this study is to develop a sensitive LC-MS/MS method to simultaneously quantify MMF, MPA, and two major metabolites, mycophenolic acid-glucuronide (MPAG) and Acyl-mycophenolic acid-glucuronide (AcMPAG) and applied this method in a pharmacokinetic (PK) and tissue distribution study. A Shimadzu UHPLC system coupled to an AB Sciex QTrap 4000 mass spectrometer was used for the analysis. Protein precipitation with a mixture of methanol: acetonitrile (2:1, v:v) was used to process the plasma samples and tissue samples. Separation was achieved using an Ultra Biphenyl 5 µm column (100 × 2.1 mm) with 0.1% formic acid in water (A) and acetonitrile (B) as the mobile phases. Quantification analysis was performed under positive ionization mode using the multiple reaction monitoring (MRM) approach. The method was linear in the range of 1.22 - 1250.00 nM for all four analytes with correlation coefficient values > 0.99. The method was reproducible, with intra- and inter-day accuracy ranging from 85.0 ± 11.2-108.3 ± 6.50 for all analytes in both plasma, liver and intestine homogenates. The extraction recovery and matrix effect of plasma sample using a mixture methanol/acetonitrile (2:1, V:V) can achieve an acceptable range (<20%), but extraction recovery and matrix effect of AcMPAG decreased to 64.10 ± 15.42 in the liver and intestine homogenates. The analytes in plasma were found to be stable under bench-top, freeze-thaw, and storage conditions. The validated method was successfully applied to quantify MMF, MPA, MPAG, and AcMPAG in a rat PK study. The PK results showed MPA was the major form exposed in the plasma in rats after oral administration of MMF, but the major metabolites in the rat's tissue disposition were MPAG.
Assuntos
Glucuronídeos , Ácido Micofenólico , Ratos , Animais , Glucuronídeos/metabolismo , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Metanol , Distribuição TecidualRESUMO
Osteoarthritis (OA) is a chronic degenerative joint disease associated with pain, inflammation, and cartilage degradation. However, no current treatment can effectively halt the progression of the disease. Therefore, the use of NSAIDs and intra-articular corticosteroids is usually recommended as the primary treatment for OA-associated pain and inflammation. However, there is accumulating evidence that the long-term use of oral NSAIDs and intra-articular corticosteroids can lead to a myriad of negative side effects. Although numerous efforts have been made to develop intra-articular formulations for NSAIDs, the systemic exposure of intra-articular injection of NSAIDs and its potential side effects have not been explicitly investigated. To ascertain the evident and potential side effects of intra-articular injection of anti-inflammatory agents, we have summarised in this review the systemic exposure, local side effects, and systemic side effects of intra-articular injections of anti-inflammatory agents, including NSAIDs and corticosteroids. For developing a safer treatment to fulfil the unmet long-term use needs of patients, a new therapy, which combines the locally active drug and a sustained-release formulation, has been proposed in this review.
Assuntos
Osteoartrite , Humanos , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Injeções Intra-Articulares , Anti-Inflamatórios não Esteroides/efeitos adversos , Dor , Corticosteroides/efeitos adversos , Inflamação/tratamento farmacológicoRESUMO
Background: Ginger (Z. officinale Rosc.) is a common herb and is widely used as a diet-based or home therapy in traditional medicine worldwide. However, fresh ginger turns into dried ginger after kiln drying and shows a different treatment effect in clinical practice. Objective: To characterize the changes of major bioactive constituents in dried ginger after the processing of fresh ginger. Methods: A novel, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC−QTOF/MS) method was established to characterize the changes in the bioactive constituents of dried ginger. The novel strategy was split into two steps: firstly, the MS selected the most intense precursor ions of tandem MS; then, target MS/MS acquisition with different collision energies (10, 20, and 40 eV) was used to characterize the compound's accurate MS/MS spectra and compare the MS/MS spectrum with the building MS reference library and reference standards. Result: Fifty-three compounds, including diarylheptanoids, gingerols, gingerodiols, gingerdiones, and shogaol-related compounds, were identified based on summarized fragmentation patterns. Fifteen out of fifty-three compounds were diarylheptanoids, which was different from fresh ginger. Conclusion: These identified compounds could be used to characterize the quality of dried ginger, pharmacologic studies should focus on diarylheptanoids explaining the different treatment effects between fresh ginger and dried ginger.
Assuntos
Zingiber officinale , Zingiber officinale/química , Espectrometria de Massas em Tandem/métodos , Água , Cromatografia Líquida de Alta Pressão/métodos , DiarileptanoidesRESUMO
Objective: We aim to quantify the absolute protein expression of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) in various cells and tissues to determine the relative contribution of COX-1 and COX-2 to PGE2 production. Methods: An LC-MS method was developed and validated, then used for quantifying the absolute amounts of COX-1 and COX-2 in recombinant human COX-1 and COX-2, lysates from different cells, tissue microsomes of rodents and humans, Pirc rat colonic polyps, and biopsy specimens from squamous cell carcinoma (SCC) patients. The COX-1 and COX-2 turnover numbers were subsequently calculated based on apparent formation rates of PGE2. Results: A robust LC-MS method for quantification of COX-1 and COX-2 was developed and validated and then used to calculate their apparent turnover numbers. The results showed that COX-1 expression levels were much higher than that of COX-2 in all the tested tissues including the colonic epithelium of F344 (28-fold) and Pirc rats (20-fold), colonic polyps of Pirc rats (8-fold), and biopsy specimens of SCC patients (11-17-fold). In addition, both COX-1 and COX-2 were higher in polyps when compared to adjacent mucosa of Pirc rats. The turnover number of recombinant human COX-2 was 14-fold higher than that of recombinant human COX-1. LPS stimulation increased COX-2 protein expression in three cell lines (Raw 264.7, SCC9 and EOMA) as expected but unexpectedly increased COX-1 protein expression (13.8-fold) in EOMA cells. Conclusion: In human oral cancer tissues and cells as well as Pirc rat colon, COX-1 plays an unexpectedly but more important role than COX-2 in abnormal PGE2 production since COX-1 expression is much higher than COX-2. In addition, COX-1 expression levels are inducible in cells, and higher in polyps than surrounding mucosa in Pirc rat colon. These results indicate that targeted suppression of local COX-1 should be considered to reduce colon-specific PGE2-mediated inflammation.
RESUMO
Gut microbial ß-glucuronidase (gmGUS) is involved in the disposition of many endogenous and exogenous compounds. Preclinical studies have shown that inhibiting gmGUS activity affects drug disposition, resulting in reduced toxicity in the gastrointestinal tract (GIT) and enhanced systemic efficacy. Additionally, manipulating gmGUS activity is expected to be effective in preventing/treating local or systemic diseases. Although results from animal studies are promising, challenges remain in developing drugs by targeting gmGUS. Here, we review the role of gmGUS in host health under physiological and pathological conditions, the impact of gmGUS on the disposition of phenolic compounds, models used to study gmGUS activity, and the perspectives and challenges in developing drugs by targeting gmGUS.
Assuntos
Microbioma Gastrointestinal , Glucuronidase , Animais , Trato Gastrointestinal , Glucuronidase/farmacologiaRESUMO
A new aryltetralin lignan, bupleroid A (1), along with ten known analogues (2-11) were isolated from Bupleurum marginatum. The structures of these isolates were determined by 1D and 2D NMR, HRESIMS, and ECD data analysis. In addition, the DPPH radical scavenging capacities of all compounds were evaluated. Compound 6 exhibited good DPPH radical scavenging activity at a concentration of 50 µM.[Formula: see text].
Assuntos
Bupleurum , Lignanas , Antioxidantes/química , Antioxidantes/farmacologia , Bupleurum/química , Lignanas/química , Lignanas/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
Fenoldopam is an approved drug used to treat hypotension. The purpose of this study is to develop and validate an LC-MS method to quantify fenoldopam and its major metabolites fenoldopam-glucuronide and fenoldopam-sulfate in plasma and apply the method to a pharmacokinetic study in rats. A Waters C18 column was used with 0.1% formic acid in acetonitrile and 0.1% formic acid in water as the mobile phases to elute the analytes. A positive-negative switching method was performed in a triple quadrupole mass spectrometer using Multiple Reaction Monitoring (MRM) mode. A one-step protein precipitation using methanol and ethyl acetate was successfully applied for plasma sample preparation. The method was validated following the FDA guidance. The results show that the LLOQ of fenoldopam, fenoldopam-glucuronide and fenoldopam-sulfate is 0.98, 9.75 and 0.98 nM, respectively. The intraday and interday variance is less than 8.4% and the accuracy is between 82.5 and 116.0 %. The extraction recovery for these three analytes ranged from 81.3 ± 4.1% to 113.9 ± 13.2%. There was no significant matrix effect and no significant degradation under the experimental conditions. PK studies showed that fenoldopam was rapidly eliminated (t1/2 = 0.63 ± 0.24 h) from the plasma and glucuronide is the major metabolite. This method was suitably selective and sensitive for pharmacokinetic and phase II metabolism studies.
Assuntos
Cromatografia Líquida/métodos , Fenoldopam , Espectrometria de Massas em Tandem/métodos , Animais , Feminino , Fenoldopam/sangue , Fenoldopam/metabolismo , Fenoldopam/farmacocinética , Glucuronídeos/sangue , Glucuronídeos/metabolismo , Glucuronídeos/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sulfatos/sangue , Sulfatos/metabolismo , Sulfatos/farmacocinéticaRESUMO
PURPOSE: Raloxifene undergoes extensive glucuronidation in the gastrointestinal (GI) tract and the liver. However, the impact of age on raloxifene disposition has never been studied. The purpose of this paper is to determine glucuronidation and Pharmacokinetics (PK) profiles of raloxifene in rats at different ages. METHODS: Raloxifene glucuronidation was characterized using S9 fractions prepared from different intestinal segments and the liver of F344 rats at 4-, 11-, and 28-week. PK studies were conducted to determine raloxifene oral bioavailability at different ages. Raloxifene and its glucuronides were quantified using LC-MS/MS. RESULTS: Raloxifene-6-glucuronide and raloxifene-4'-glucuronide were detected as the major metabolites and the ratio of these two glucuronides were different ranging from 2.1 to 4.9 folds in the ileum, jejunum, liver, and duodenum, and from 14.5 to 50 folds in the colon. The clearances in the duodenum at 4-week for both two glucuronides were significantly lower than those at the other two ages. PK studies showed that the oral bioavailability of raloxifene is age dependent. The absolute oral bioavailability of raloxifene was 3.5-folds higher at 4-week compared to that at 11-weeks. When raloxifene was administered through IV bolus, its half-life was 5.9 ± 1.16 h and 3.7 ± 0.68 h at 11-and 4-week, respectively. CONCLUSION: These findings suggested that raloxifene metabolism in the duodenum was significantly slower at young age in rats, which increased the oral bioavailability of raloxifene. At 11-week, enterohepatic recycling efficiency was higher than that of 4-week. Raloxifene's dose at different ages should be carefully considered.
Assuntos
Cloridrato de Raloxifeno/farmacocinética , Fatores Etários , Animais , Disponibilidade Biológica , Feminino , Glucuronatos/metabolismo , Glucuronosiltransferase/metabolismo , Intestinos/metabolismo , Fígado/metabolismo , Piperidinas/metabolismo , Ratos , Ratos Endogâmicos F344RESUMO
The aim of this study is to establish a reliable liquid chromatography-mass spectrometry method to simultaneously quantitate raloxifene, and its major metabolites, raloxifene-6-glucuronide, raloxifene-4'-glucuronide, and raloxifene-6-sulfate in rat plasma samples for pharmacokinetic studies. The separation of the analytes was achieved on a Waters BEH C18 column. Water (0.1% formic acid) and acetonitrile were used as the mobile phases for elution. A one-step protein precipitation using a mixture solvent was applied for plasma sample preparation. The method was validated following the FDA guidance. The results showed that the linear range were 1.95-1000 nM for raloxifene-6-glucuronide, and raloxifene-4'-glucuronide, 0.195-100 nM for raloxifene-6-sulfate, and 0.195-200 nM for raloxifene, respectively. The lower limit of quantification was 1.95, 1.95, 0.195, and 0.195 nM for raloxifene-6-glucuronide, raloxifene-4'-glucuronide, raloxifene-6-sulfate, and raloxifene, respectively. Only 20 µl of plasma sample was required since the method is sensitive. The intra- and interday variance is <15% and the accuracy is within 85-115%. The variance of matrix effect and recovery were <15%. The method was successfully applied in a pharmacokinetic study in rats with oral administration of raloxifene.
Assuntos
Cloridrato de Raloxifeno , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Cloridrato de Raloxifeno/sangue , Cloridrato de Raloxifeno/metabolismo , Cloridrato de Raloxifeno/farmacocinética , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-DawleyRESUMO
BACKGROUND AND PURPOSE: Irinotecan-induced diarrhea (IID) results from intestinal damages by its active metabolite SN-38. Alleviation of these damages has focused on lowering luminal SN-38 concentrations. However, it is unclear if the enteric bioavailability of SN-38 is mostly dependent on luminal SN-38 concentrations. EXPERIMENTAL APPROACH: Irinotecan (50â¯mg/kg, i.p. once daily for 6â¯days) was administered to female wildtype FVB, Mdr1a (-/-), Mrp2 (-/-) and Bcrp1 (-/-) mice for pharmacokinetic (PK), toxicokinetic (TK) and biodistribution studies. Plasma PK/TK profiles and tissues drug distribution were determined after first or sixth daily doses, along with activities of blood and gut esterases and intestinal Ugts. Caco-2 cells and bile-cannulate mice were used to further investigate intestinal and biliary disposition of irinotecan and its metabolites. KEY RESULTS: Significant differences in IID severity were observed with the susceptible rank of Bcrp1(-/-)â¯>â¯wildtype FVBâ¯>â¯Mdr1a(-/-)â¯>â¯Mrp2(-/-). This rank order did not correlate with biliary excretion rates of SN-38/SN-38G. Rather, the severity was best correlated (Râ¯=â¯0.805) with the intestinal ratio of Css SN-38/SN-38G, a measure of gut Ugt activity. On the contrary, IID was poorly correlated with plasma AUC ratio of SN-38/SN-38G (Râ¯=â¯0.227). Increased intestinal esterase activities due to repeated dosing and gut efflux transporter functionality are the other key factors that determine SN-38 enteric exposures. CONCLUSION AND IMPLICATIONS: Intestinal SN-38 exposure is mainly affected by intestinal Ugt activities and blood esterase activities, and strongly correlated with severity of IID. Modulating intestinal SN-38 concentration and gut Ugt expression should be the focus of future studies to alleviate IID.
Assuntos
Diarreia/induzido quimicamente , Glucuronosiltransferase/metabolismo , Intestinos/efeitos dos fármacos , Irinotecano/farmacologia , Animais , Antineoplásicos Fitogênicos , Área Sob a Curva , Bile/metabolismo , Sistema Biliar/efeitos dos fármacos , Sistema Biliar/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Diarreia/metabolismo , Esterases/metabolismo , Feminino , Humanos , Camundongos , Distribuição Tecidual/efeitos dos fármacosRESUMO
Xiao Chai Hu Tang (XCHT) is sold as traditional medicine or dietary supplement in worldwide. To understand metabolism profile of traditional medicine is key point in their logical pharmacological research and clinical application. Based on our previous research of the chemical and absorption signature of XCHT in vitro, we proposed a novel strategy to identify the bioactive components of XCHT in vivo. This strategy have two steps: firstly, based on the parents' database in vitro, built-in and editable biotransformations for phase I and phase II metabolism reactions with MassHunter Metabolite ID software (building metabolites database). Secondly, mouse plasma, bile and urine samples were analyzed by UHPLC-ESI-Q-TOF/MS technique, and the absorbed parents and metabolites were compared and identified with the XCHT's digital library using MassHunter Metabolite ID software. In total, 27 parent compounds and 26 metabolites of XCHT were identified in vivo, 2'-O-xylosyl saikosaponin b2 or b1 was reported for the first time. Saponins and their related metabolites were predominantly excreted into the bile, but flavonoids were excreted by both hepatic as well as renal excretion. Flavonoids, saponins, gingerol and their related metabolites were the absorbed components in cardiovascular system and bioactive components of XCHT. Phase I reactions (hydrolysis, hydroxylation and oxidation) and phase II reactions (glucuronidation) were identified and involved in the mouse metabolism of XCHT.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bile/química , Bile/metabolismo , Catecóis/análise , Catecóis/química , Catecóis/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Álcoois Graxos/análise , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Flavonoides/análise , Flavonoides/química , Flavonoides/metabolismo , Masculino , Camundongos , Saponinas/análise , Saponinas/química , Saponinas/metabolismoRESUMO
BACKGROUND: Diarrhea is a severe side effect of irinotecan, a pro-drug of SN-38 used for the treatment of many types of cancers. Pre-clinical and clinical studies showed that decreasing the colonic exposure of SN-38 can mitigate irinotecan-induced diarrhea. OBJECTIVE: The purpose of this study is to evaluate the anti-diarrhea potential of Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese herbal formula, against irinotecan-induced diarrhea by determining if and how XCHT alters the disposition of SN-38. METHODS: LC-MS/MS was used to quantify the concentrations of irinotecan and its major metabolites (i.e., SN-38, SN-38G). An Intestinal perfusion model was used to determine the effect of XCHT on the biliary and intestinal secretions of irinotecan, SN-38, and SN-38G. Pharmacokinetic (PK) studies were performed to determine the impact of XCHT on the blood and fecal concentrations of irinotecan, SN-38, and SN-38G. RESULTS: The results showed that XCHT significantly inhibits both biliary and intestinal excretions of irinotecan, SN-38, and SN-38G (range: 35% to 95%). PK studies revealed that the fecal concentrations of irinotecan and SN-38 were significantly decreased from 818.35 ± 120.2 to 411.74 ± 138.83 µg/g or from 423.95 ± 76.44 to 245.63 ± 56.72 µg/g (p<0.05) by XCHT, respectively, suggesting the colonic exposure of SN-38 is significantly decreased by XCHT. PK studies also showed that the plasma concentrations of irinotecan, SN-38, and SN-38G were not affected by XCHT. CONCLUSION: In conclusion, XCHT significantly decreased the exposure of SN-38 in the gut without affecting its plasma level, thereby possessing the potential of alleviating irinotecan-induced diarrhea without negatively impacting its therapeutic efficacy.
Assuntos
Sistema Biliar/metabolismo , Diarreia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Mucosa Intestinal/metabolismo , Irinotecano/toxicidade , Animais , Sistema Biliar/efeitos dos fármacos , Diarreia/induzido quimicamente , Diarreia/metabolismo , Diarreia/patologia , Mucosa Intestinal/efeitos dos fármacos , Irinotecano/farmacocinética , Masculino , Ratos , Ratos Wistar , Distribuição TecidualRESUMO
Gelsemium elegans Benth., a well-known toxic herbal plant, is widely used to treat rheumatic arthritis, inflammation and other diseases. Gelsemium contains humantenmine (HMT), which is an important bioactive and toxic alkaloid. Cytochrome P450 enzymes (CYPs) play important roles in the elimination and detoxification of exogenous substances. This study aimed to investigate the roles of CYPs in the metabolism and detoxification of HMT. First, metabolic studies were performed in vitro by using human liver microsomes, selective chemical inhibitors and recombinant human CYPs. Results indicated that four metabolites, including hydroxylation and oxidation metabolites, were found in human liver microsomes and identified based on their high-resolution mass spectrum. The isoform responsible for HMT metabolism was mainly CYP3A4/5. Second, the toxicity of HMT on L02 cells in the presence of the nicotinamide adenine dinucleotide phosphate system (NADPH) was significantly less than that without NADPH system. A CYP3A4/5 activity inhibition model was established by intraperitoneally injecting ketoconazole in mice and used to evaluate the role of CYP3A4/5 in HMT detoxification. In this model, the 14-day survival rate of the mice decreased to 17% after they were intragastrically treated with HMT, along with hepatic injury and increasing alanine aminotransferase (ALT) /aspartate aminotransferase (AST) levels. Overall, CYP3A4/5 mediated the metabolism and detoxification of HMT.
Assuntos
Alcaloides/metabolismo , Alcaloides/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Gelsemium/química , Gelsemium/toxicidade , Inativação Metabólica , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Adulto JovemRESUMO
Esculetin (ET)-7-O-glucuronide (ET-G) and 4-methylesculetin (4-ME)-7-O-glucuronide (4-ME-G) are the main glucuronide of ET and 4-ME, respectively. The disposition mediated by efflux transporters for glucuronide has significant influence on the pharmacokinetic profile and efficacy of bioactive compounds. In the current study, transporter gene knockout mice and Caco-2 cells were used to explore the effects of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) on the disposition of ET-G and 4-ME-G. After oral or i.v. administration of ET and 4-ME, the area under the plasma concentration-time curve from time 0 to the last data point or infinity values of ET, 4-ME, and their glucuronides (ET-G and 4-ME-G) were remarkably and significantly increased in most Bcrp1-/- and Mrp2-/- mice compared with those in wild-type FVB mice (P < 0.05). These results were accompanied with a significant increase of maximum plasma concentration values (P < 0.05). In Caco-2 monolayers, the efflux and clearance rates of ET-G and 4-ME-G were markedly reduced by the BCRP inhibitor Ko143 and MRP2 inhibitor MK571 on the apical side (P < 0.05). In an intestinal perfusion study, the excretion of ET-G was significantly decreased in perfusate and increased in plasma in Bcrp1-/- mice compared with those in wild-type FVB mice (P < 0.05). The 4-ME-G concentration was also decreased in the bile in transporter gene knockout mice. ET and 4-ME showed good permeability in both Caco-2 monolayers [apparent permeability (Papp ) ≥ 0.59 × 10-5 cm/s] and duodenum (Papp ≥ 1.81). In conclusion, BCRP and MRP2 are involved in excreting ET-G and 4-ME-G. ET and 4-ME are most likely absorbed via passive diffusion in the intestines.