Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(30): 32525-32535, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100364

RESUMO

This study aimed to investigate the effect of the microstructure of shale on fracture initiation and extension during hydraulic fracturing. The Longmaxi Formation shale reservoir in the Sichuan Basin was considered as the research object; its structure was modeled from a microscopic perspective, and a zero-thickness cohesive unit was embedded within the solid unit. Numerical simulations were performed to study the effect of mineral content on the microextension of the hydraulic fracture, extension behavior, and evolution law of shale. The results showed that changes in the mineral content resulted in changes in the forces between molecules within the minerals, which, in turn, affected the shale's brittleness. The percentages of brittle mineral content in the Long I, II, and III reservoir sections are 60.37, 47.60, and 53.56%, respectively. The fracture initiation pressures of the three reservoirs were 29.22, 31.42, and 30.22 MPa, respectively, and a linear correlation was found between the fracture initiation pressures and the brittle mineral contents of the reservoir sections. An increase in the reservoirs' percentage of brittle mineral content facilitated the fracture initiation, with a corresponding gradual decrease in the resistance to fracture initiation. The pore pressures of the fractures in the three reservoirs after fracture initiation were 0.90, 1.18, and 1.00 MPa, respectively. The larger the percentage of brittle minerals was, the lower was the fracture pore pressure. The greater the length, number, area, and width of the cracks were, the more likely they were to form longer and wider cracks. Hence, reservoirs with a high percentage of brittle minerals should be prioritized as the target formations for hydraulic fracturing operations. The results of this study reveal how the mineral content affects the extension of microscopic hydraulic fractures in shale reservoirs. As such, this work can provide a theoretical basis for rationally selecting a hydraulic fracturing operation layer in shale gas reservoirs.

2.
Sci Rep ; 14(1): 15207, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956294

RESUMO

The creep characteristics and potential deformation patterns of gangue backfill material are crucial in backfill mining operations. This study utilizes crushed gangue from the Gangue Yard in Fuxin City as the research material. An in-house designed, large-scale, triaxial gangue compaction test system was used. Triaxial compaction creep tests were conducted on gangue materials with varying particle size distributions. Analysis was performed based on different particle sizes, stresses, and confinement pressures. The study investigates the creep characteristics of the gangue under different conditions and explores the underlying causes. It reveals the relationship between the creep deformation of gangue materials and the passage of time. Mathematical methods are applied to develop a triaxial compaction creep power law model for gangue backfill materials. Finally, the creep results are fitted using an empirical formula approach.

3.
Sci Rep ; 13(1): 19117, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926708

RESUMO

The disposal and utilization of solid waste of coal gangue is one of the main problems in coal mining in China. Injecting coal gangue into goaf in the form of slurry can effectively solve the problems of ground stacking and environmental pollution prevention. In order to obtain the flow law of gangue slurry in the void of the accumulated rock in the goaf, a visualization simulation test device for gangue slurry permeation grouting in the goaf was independently designed. The flow and diffusion characteristics, flow and diffusion velocity changes, void pressure changes, and viscosity changes of three mass concentrations (76%, 78%, 80%) of gangue slurry in the void between caved rock blocks in goaf were studied by visual grouting simulation test. The results show that: (1) The seepage process of gangue slurry in the goaf simulation test is divided into three diffusion forms, namely radial diffusion, axial diffusion, and bidirectional diffusion. The three diffusion forms are interrelated and inseparable. (2) The initial flow velocity of the slurry with different concentrations is different under the same permeation grouting pressure, and the higher the slurry concentration, the smaller the initial flow velocity of the slurry. The velocity of the slurry has a nonlinear relationship with the diffusion distance of the slurry. (3) With the permeation and diffusion of slurry, pressure sensors at different positions are subjected to pressure from bottom to top and enter the pressure boost stage, gradually forming stress peaks. When the slurry exceeds the position of the pressure sensor, the pressure on the pressure sensor is weakened and begins to enter the pressure relief stage, and the stress decline trend gradually becomes gentle with time. (4) The water loss effect occurs during slurry flow interaction with rock mass, resulting in slurry viscosity increasing. The viscosity of the slurry affects the difference in the amount of viscosity change. The research results can provide a certain theoretical basis for the goaf gangue slurry filling project.

4.
ACS Omega ; 8(19): 16935-16947, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214727

RESUMO

To explore the shale gas occurrence mechanism in shale with an intact pore structure under actual reservoir conditions, an adsorption experiment on massive shale was performed. Considering the change in the pore volume of massive shale under effective stress, the adsorption mechanism and free gas storage space of massive shale were investigated. Based on the adsorption mechanism assumptions of micropore filling and mesopore multilayer adsorption, the adsorbed phase densities of pores of varying pore sizes were calculated and applied to the conversion of the absolute adsorption amount of massive shale. The results show the existence of isolated pores in the massive shale, resulting in a lower adsorption capacity in comparison to granular samples. When subjected to the combined effects of in situ stress and pore pressure, the pore volume of massive shale gradually decreases with the increase in effective stress. Shale gas is mainly adsorbed in micropores, but with increasing pressure, the adsorption amount of micropores approaches saturation, and the contribution of mesopores to the total adsorption amount gradually increases. The main adsorption mechanism of shale gas is based on micropore filling, and the multilayer surface adsorption of mesopores should also be considered. By combining the simplified local density model and the Ono-Kondo lattice model, the adsorption behavior of shale gas can be accurately described. To accurately estimate shale gas reserves, it is necessary to take into account the actual pore size distribution, pore volume compressibility, and connected porosity of the shale samples.

5.
ACS Omega ; 7(26): 22698-22713, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811891

RESUMO

The bedding plane formed by sedimentation makes shale anisotropic. To clarify the influence of bedding on the hydraulic fracturing of shale, the fracture characteristics of bedding shale were first clarified by conducting a hydraulic fracturing experiment on large-scale shale samples with different bedding angles. Subsequently, combined with the experimental results, based on the theory of elasticity, a new fracture initiation criterion for shale hydraulic fracturing considering its anisotropic characteristics was established. The influence of the bedding angle on the hydraulic fracture initiation pressure and initiation angle was analyzed. The results showed that the pump pressure curve during hydraulic fracturing can be divided into four stages: continuous pressurization, internal pressure drop, internal pressure attenuation, and internal pressure equilibrium stage. Corresponding to the four stages of the pump pressure curve, the evolution of hydraulic fracture has four processes: microfracture development, fracture initiation, fracture propagation, and fracture network equilibrium process. When the direction of the maximum principal stress is perpendicular to the bedding, a complex fracture network is easily formed. Depending on whether the bedding plane is open or not, the modes of interaction between the hydraulic fractures and bedding plane could be divided into eight types. Hydraulic fractures initiate in two ways: from the matrix and from natural fractures. During fracturing, with the increase in the bedding angle, the initiation pressure decreases gradually and the initiation angle decreases first and then increases. The knowledge gained in this study can provide data and theoretical support for drilling direction design and fracture pressure evaluation in the field of hydraulic fracturing.

6.
ACS Omega ; 7(16): 13644-13653, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559137

RESUMO

Hydraulic fracturing technology is an important technical means to increase shale gas production. The seepage channels formed in the hydraulic fractures during hydraulic fracturing can help increase reservoir permeability. Therefore, it is of significance to study the seepage law of the fracture network after reservoir hydraulic fracturing. In this study, hydraulic fracturing is used to fracture full-diameter shale cores, and three typical forms of hydraulic fracture networks are obtained. The characteristics of the fracture networks are analyzed by X-ray CT scanning. The effects of pore pressure and slippage on the permeability of the fracture networks are simulated by conducting experiments. The experimental results show that in the direction of gas seepage, hydraulic fractures completely penetrate the sample, and the greater the diameter and volume of the fracture, the better the hydraulic fracture conductivity. When the confining pressure remains unchanged at 50 MPa, the apparent permeability values of the hydraulic fractures with the worst and best fracture morphologies increase by 44.4 times and 2.8 times, respectively, with the decrease in the pore pressure from 30 to 2 MPa. The apparent permeability of the shale samples has a power function relationship with the pore pressure. The test results also show that the absolute permeability is positively correlated with the number of effective seepage channels in the hydraulic fractures and the number of hydraulic fractures, whereas the Klinkenberg coefficient is negatively correlated. Our research results can provide a basis for shale gas production model research and for on-site production capacity improvement. The qualitative understanding and scientific explanation of the effects of pore pressure and slippage on fracture network permeability in the process of depressurization of reservoir production have been realized.

7.
ACS Omega ; 7(16): 13737-13749, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559168

RESUMO

The co-mining of coal and gas is the inevitable future direction of the mining of coal resources. Taking coal mining and gas extraction as the two subsystems of the coal and gas co-mining system, to reveal the mechanism of action between coal mining and gas extraction is the premise of orderly co-mining. On the basis of a similar simulation experiment of coal and gas co-mining, by obtaining the gas migration law during the mining process and collecting a large amount of data on the coal production and gas extraction, it is found that the two subsystems of coal extraction and gas extraction in the coal and gas co-mining system promote and restrict each other. The control parameters for coal mining and gas extraction that affect co-mining are identified. To coordinate the process connection between coal mining and gas extraction, the optimal synergistic relationship of co-mining should be found. The recovery rate and economic benefit of coal and gas resources are taken as the optimization objective function of coal and gas co-mining. Taking the safety production laws, regulations, and production technology-level restrictions of coal mining and gas drainage as constraints, by constituting a nonlinear model for the collaborative optimization of coal and gas co-mining, the method of determining the optimal advancing speed and optimal gas drainage volume of the working face is proposed. By optimizing variables, such as coal mining advancement, coal mining time, gas extraction time, and gas extraction volume, the co-mining of coal and gas is ensured to be safe and efficient, and the output of coal and gas resources is optimized. The time connection and the process succession of the two subsystems are attained. An overall orderly structure is formed between the coal mining system and the gas extraction system, and the mechanism of the cooperative co-mining of coal and gas is revealed. This research has important significance with regard to improving the basic theoretical system of coal and gas co-mining. The control variables of the co-mining working face in the Shaqu mine are optimized. After optimization, the profit is increased by 16.3%, and the gas extraction rate is increased by 2.6%. The drilling spacing is optimized according to the optimization results. The simulation shows that 7 m is the optimal drilling spacing of the working face.

8.
Sci Rep ; 12(1): 2202, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140297

RESUMO

To study the mesoscopic damage and permeability evolution characteristics of rock under freeze-thaw (F-T) cycles, freeze-thaw cycle experiments were carried out of shale under different F-T temperatures and numbers of cycles, and nuclear magnetic resonance (NMR) and permeability experiments of shale were conducted thereafter. On the basis of these experiments, the pores and permeability of the F-T shale were analyzed, and the existing permeability model is modified and improved; Therefore, the mesoscopic damage evolution characteristics and permeability evolution law of the F-T shale are obtained. It was found that with increasing number of cycles, the pore structure of the rock samples changed as the pore size expanded and the number of pores increased, and the average porosity also increased correspondingly. The influence of the F-T cycle temperature on the shale permeability was not as notable as that of the number of F-T cycles. Based on the SDR-REV permeability model, the spectral area ratio parameters of large pores and fractures in the T2 spectrum were considered for correction, and a direct relationship between the permeability, F-T temperature and number of cycles was obtained via regression analysis. Compared to the experimental results, it was found that the modified model achieved a good applicability. The damage and permeability characteristics of shale under different F-T conditions were analysed from a microscopic perspective, which could yield an important reference for engineering construction in frozen soil areas.

9.
ACS Omega ; 6(2): 1603-1611, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490820

RESUMO

The thermal effect of coal adsorption/desorption gas is very important for understanding the evolution of coal temperature and interaction between coal and gas during coal and gas outburst. The pressure difference between the high gas pressure area in front of the working face and the low gas pressure area near the coal wall may affect the adsorption/desorption thermal effect. In order to reveal the characteristics of the coal adsorption/desorption gas thermal effect at different pressure differences, a thermo-hydro-mechanical-coupled experimental system of coal and gas was designed. Taking no.3 coal from Xinjing Mine as the research object, the characteristics of the coal adsorption/desorption gas thermal effect under different pressure differences are studied by using the cycle-step experiment method. It is found that coal adsorbs gas to release heat, while coal desorbs gas to absorb heat. Also, the temperature variation and temperature accumulation caused by adsorption are greater than those caused by desorption. Under the same pressure difference, the temperature increase rate during the adsorption changes from large to small, and the temperature variation gradually decreases; the temperature decrease rate during the desorption changes from small to large, and the temperature variation gradually increases; desorption is the reverse process of adsorption. The relation between temperature variation and gas pressure is linear, and the increasing range of temperature variation gradually decreases with the increase of pressure difference. The relation between temperature accumulation and gas pressure conforms to an exponential function, and the decreasing range of temperature accumulation gradually decreases with the increase of pressure difference. The greater the pressure difference, the greater is the energy variation caused by the adsorption/desorption thermal effect. The experimental results of different pressure differences can reflect the characteristics of the coal adsorption/desorption gas thermal effect under different geological structures or outburst types.

10.
ACS Omega ; 6(51): 35830-35843, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34984312

RESUMO

In the deep mining process of coal seams, the mechanical environment of the coal body is complex and in the state of cyclic loading and unloading. The change in the stress state leads to the change in the pore characteristics and the permeability. To investigate the effects of cyclic loading and unloading on the pore characteristics and the permeability of coal, the seepage experiment was carried out for the coal samples using the self-developed triaxial permeation instrument. By pressure confining and continuous cyclic loading and unloading, the evolution of the porosity and the permeability of the coal samples was investigated. Under the condition of the experiment, the influences of the initial value of the confining pressure and the cyclic load amplitude on the evolution of the permeability and the pore structure characteristics of the coal samples were clarified. The experimental results showed that the porosity and the permeability decreased exponentially with an increase in the number of loading and unloading cycles, and this decreasing trend gradually weakened until the porosity and the permeability became relatively stable. When the cyclic load amplitude was the same and the confining pressure increased, the effective porosity of the coal body and the bound porosity decreased. When the confining pressure was the same and the cyclic load amplitude increased, the effective porosity of the coal body decreased and the bound porosity increased. The loss rate of the permeability of the coal samples increased gradually with an increase in the cyclic load amplitude. The same tendency was observed when the cyclic load amplitude was the same, and the confining pressure was different, while the increasing trend was not so obvious. By analyzing the relationship between the porosity and the permeability of the coal samples under different cyclic loading and unloading paths, it was found that the effective porosity and the permeability of the coal samples conformed to the power-law relationship in the process of cyclic loading and unloading, and the change in the cyclic load amplitude had a significant effect on this relationship. The influences of the cyclic load amplitude and the confining pressure on the stress sensitivity of the coal samples were considered, and the change factor of the stress sensitivity was introduced into the relationship between the porosity and the permeability. This relationship was established considering cyclic loading and unloading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA