Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Adv Mater ; : e2410695, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449192

RESUMO

Intramolecular noncovalent interaction (INCI), a crucial strategy for effectively enhancing molecular planarity and extending π-electron delocalization in organic semiconductors (OSCs), has played an increasingly important role in optoelectronic applications. However, though the INCI formation is regularly considered to improve the device performance by literature, there is no feasible approach to directly and reliably characterizing its formation in practical-OSC films thus far. Here in this study, by theoretical analysis and calculation, the generation of INCIs in OSCs is found, normally consisting of relatively heavy elements, such as O···Se, O···S, N···S interactions, etc., can induce enhanced strength of spin-orbit coupling, the primary factor dominating spin lifetime in OSCs. Based on this newly discovered theory, spin lifetime is creatively employed as a probe for sensitively detecting INCIs in OSC films via spin valves or field-induced electron paramagnetic resonance, respectively. This study will highly promote academic and applicable developments of the cross-cutting frontier research field between organic spintronics and electronics.

2.
Precis Chem ; 2(1): 1-13, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-39474567

RESUMO

Molecular spintronics, as an emerging field that makes full use of the advantage of ultralong room-temperature spin lifetime and abundant electrical-optical-magnetic properties of molecular semiconductors, has gained wide attention for its great potential for further commercial applications. Despite the significant progress that has been made, there remain several huge challenges that limit the future development of this field. This Perspective provides discussions on the spin transport mechanisms and performances of molecular semiconductors, spinterface effect, and related spin injection in spintronic devices, and current spin-charge interactive functionalities, along with the summarization of the main obstacles of these aspects. Furthermore, we particularly propose targeted solutions, aiming to enhance the spin injection and transport efficiency by molecular design and interface engineering and explore diverse spin-related functionalities. Through this Perspective, we hope it will help the spintronic community identify the research trends and accelerate the development of molecular spintronics.

3.
Angew Chem Int Ed Engl ; : e202413303, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370407

RESUMO

Incorporating 2D perovskite in 3D perovskite absorber holds great potential to improve the stability and efficiency of perovskite solar cells (PSCs). However, the bulky-cation-based 2D structures often exhibit poor charge transport and are prone to formation of charge-extraction barrier that impedes efficient device operation. We address these issues by introducing aromatic spacers with enhanced molecular conjugation. Among our tested aromatic spacers, the pyrenylbutanamine (PyBA) spacer was shown to endow 2D perovskites with superior charge transport properties and efficient charge extraction from the bulk perovskite in 2D/3D PSCs, due to the highest degree of conjugation. As a result, we achieved a power conversion efficiency of up to 25.3% in a 0.16-cm2 single cell and 21.0% in a 24.8-cm2 module. Moreover, the incorporated PyBA substantially raised the resistance of 2D/3D PSCs against moisture and ion migration, resulting in enhanced environmental, thermal, and operational stability. Notably, the PyBA-based devices retained over 90% of their initial efficiency after 2000 hours at 25 ℃ and 80% relative humidity, or 1000 hours at 85 ℃ and 85% humidity, or 3000 hours of operation under continuous 1-Sun illumination at 40 ℃, showcasing their enhanced stability compared to previously reported 2D/3D PSCs.

4.
Nat Commun ; 15(1): 8368, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333497

RESUMO

Organic semiconductors (OSCs) are featured by weak spin-orbit coupling due to their light chemical element composition, which enables them to maintain spin orientation for a long spin lifetime and show significant potential in room-temperature spin transport. Carrier mobility and spin lifetime are the two main factors of the spin transport performance of OSCs, however, their ambiguous mechanisms with molecular structure make the development of spintronic materials really stagnant. Herein, the effects of halogen substitution in bay-annulated indigo-based polymers on carrier mobility and spin relaxation have been systematically investigated. The enhanced carrier mobility with an undiminished spin lifetime contributes to a 3.7-fold increase in spin diffusion length and a record-high magnetoresistance of 8.7% at room temperature. By analyzing the spin-orbit coupling and hyperfine interaction, it was found that the distance of the substitution site from the conjugated center and the nitrogen atoms in the molecules play crucial roles in spin relaxation. Based on the above results, we proposed a molecular design strategy of halogen substitution far from conjugate center to enhance spin transport efficiency, presenting a promising avenue for advancing the field of organic spintronics.

5.
Angew Chem Int Ed Engl ; : e202410721, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212245

RESUMO

Cesium-based inorganic perovskites have emerged as promising light-harvesting materials for perovskite solar cells (PSCs) due to their promising thermal- and photo-stability. However, obstacles to commercialization remain regarding their phase instability. In this work, we report a facile and effective strategy to regulate the surface compressive strain via in situ surface reaction to stabilize CsPbI3 perovskite. The use of a chelating ligand with a molecular configuration closely matching the integer multiples of the unit cell lattice parameters of CsPbI3 induces compressive strain at the surface of CsPbI3. The chemical bonding and strain modulation synergistically not only passivate film defects, but also inhibit perovskite phase degradation, thus significantly improving the intrinsic stability of inorganic perovskite. Consequently, enhanced power conversion efficiency (PCE) of 21.0 % and 18.6 % were respectively achieved in 0.16-cm2 lab-scale devices and 25.3-cm2 solar modules. Further, surface reaction enables PSCs with enhanced thermal and operational stability; these devices retain over 95 % of their initial PCE after damp-heat tests (i.e., in 85 °C and 85 % R. H. air) for 2000 h, and remain 99 % of their initial PCE after operating for 2000 h, representing one of the most stable inorganic PSCs reported so far.

6.
Adv Mater ; 36(26): e2402001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597787

RESUMO

Molecular semiconductor (MSC) is a promising candidate for spintronic applications benefiting from its long spin lifetime caused by light elemental-composition essence and thus weak spin-orbit coupling (SOC). According to current knowledge, the SOC effect, normally dominated by the elemental composition, is the main spin-relaxation causation in MSCs, and thus the molecular structure-induced SOC change is one of the most concerned issues. In theoretical study, molecular isomerism, a most prototype phenomenon, has long been considered to possess little difference on spin transport previously, since elemental compositions of isomers are totally the same. However, here in this study, quite different spin-transport performances are demonstrated in ITIC and its structural isomers BDTIC experimentally, for the first time, though the charge transport and molecular stacking of the two films are very similar. By further experiments of electron-paramagnetic resonance and density-functional-theory calculations, it is revealed that noncovalent-conformational locks (NCLs) formed in BDTIC can lead to enhancement of SOC and thus decrease the spin lifetime. Hence, this study suggests the influences from the structural-isomeric effect must be considered for developing highly efficient spin-transport MSCs, which also provides a reliable theoretical basis for solving the great challenge of quantificational measurement of NCLs in films in the future.

7.
Int J Antimicrob Agents ; 63(5): 107160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537721

RESUMO

In a vast majority of bacteria, protozoa and plants, the methylerythritol phosphate (MEP) pathway is utilized for the synthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), which are precursors for isoprenoids. Isoprenoids, such as cholesterol and coenzyme Q, play a variety of crucial roles in physiological activities, including cell-membrane formation, protein degradation, cell apoptosis, and transcription regulation. In contrast, humans employ the mevalonate (MVA) pathway for the production of IDP and DMADP, rendering proteins in the MEP pathway appealing targets for antimicrobial agents. This pathway consists of seven consecutive enzymatic reactions, of which 4-diphosphocytidyl-2C-methyl-D-erythritol synthase (IspD) and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) catalyze the third and fifth steps, respectively. In this study, we characterized the enzymatic activities and protein structures of Helicobacter pylori IspDF and Acinetobacter baumannii IspD. Then, using the direct interaction-based thermal shift assay, we conducted a compound screening of an approved drug library and identified 27 hit compounds potentially binding to AbIspD. Among them, two natural products, rosmarinic acid and tanshinone IIA sodium sulfonate, exhibited inhibitory activities against HpIspDF and AbIspD, by competing with one of the substrates, MEP. Moreover, tanshinone IIA sodium sulfonate also demonstrated certain antibacterial effects against H. pylori. In summary, we identified two IspD inhibitors from approved ingredients, broadening the scope for antibiotic discovery targeting the MEP pathway.


Assuntos
Acinetobacter baumannii , Antibacterianos , Helicobacter pylori , Hemiterpenos , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Compostos Organofosforados/farmacologia , Humanos , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
8.
Nat Commun ; 15(1): 1476, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368459

RESUMO

Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.


Assuntos
Antineoplásicos , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Proteína bcl-X/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose , Linhagem Celular Tumoral
9.
Nat Commun ; 15(1): 865, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286850

RESUMO

Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study.

10.
Diagn Microbiol Infect Dis ; 108(3): 116165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176299

RESUMO

Extremely high serum ferritin, which is regarded as a marker of adult-onset still's disease (AOSD), has been rarely observed in patients with TB. We report a case of TB diagnose by metagenomic next-generation sequencing(mNGS) who presented with clinical criteria of AOSD and extreme hyperferritinemia, which posed a diagnostic confusion. TB presenting with major clinical criteria of AOSD should be notable. Since TB remains a potentially curable disease, an awareness of its' protean manifestations is essential. A typical or even normal outcomes of clinical, microbiochemical, and radiologic evaluation should not be overlooked and dedicated diagnostic work-up should be performed for TB diagnosis. For equivocal cases, mNGS could be helpful.


Assuntos
Doença de Still de Início Tardio , Tuberculose Pulmonar , Adulto , Humanos , Doença de Still de Início Tardio/diagnóstico , Líquido da Lavagem Broncoalveolar , Escarro , Tuberculose Pulmonar/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala
11.
Opt Express ; 31(17): 27810-27820, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710848

RESUMO

Wavelength tunable mode-locked fiber lasers have highly potential applications in precision spectroscopy, nonlinear microscopy and photonic sensing. Here, we present a compact and thermal-sensitive reflective Lyot filter and utilize it for all-polarization-maintaining efficiently wavelength-tunable Er-doped carbon-nanotube-mode-locked laser for the first time, to the best of our knowledge. The output wavelength of the laser can be tuned from 1544.46 nm to 1572.71 nm, with a wide tuning range of 28.25 nm, and a remarkable tuning efficiency of 0.589 nm/°C, when the angle-spliced fiber is only 8.2 cm and the free spectral range of the filter is 31.32 nm. Dual-wavelength mode-locking is also achieved at boundary temperatures when increasing the pump power. Due to its compact size and reflection configuration, the proposed reflective Lyot filter is promising for realizing highly efficient wavelength tuning and multiwavelength generation in all-polarization-maintaining fiber lasers where reflective filters are needed.

12.
Nanoscale Horiz ; 8(9): 1132-1154, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37424331

RESUMO

The advent of spintronics has undoubtedly revolutionized data storage, processing, and sensing applications. Organic semiconductors (OSCs), characterized by long spin relaxation times (>µs) and abundant spin-dependent properties, have emerged as promising materials for advanced spintronic applications. To successfully implement spin-related functions in organic spintronic devices, the four fundamental processes of spin generation, transport, manipulation, and detection form the main building blocks and are commonly in demand. Thereinto, the effective generation of spin polarization in OSCs is a precondition, but in practice, this has not been an easy task. In this context, considerable efforts have been made on this topic, covering novel materials systems, spin-dependent theories, and device fabrication technologies. In this review, we underline recent advances in external spin injection and organic property-induced spin polarization, according to the distinction between the sources of spin polarization. We focused mainly on summarizing and discussing both the physical mechanism and representative research on spin generation in OSCs, especially for various spin injection methods, organic magnetic materials, the chiral-induced spin selectivity effect, and the spinterface effect. Finally, the challenges and prospects that allow this topic to continue to be dynamic were outlined.

13.
Adv Mater ; : e2301854, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309258

RESUMO

The explosive growth of the information era has put forward urgent requirements for ultrahigh-speed and extremely efficient computations. In direct contrary to charge-based computations, spintronics aims to use spins as information carriers for data storage, transmission, and decoding, to help fully realize electronic device miniaturization and high integration for next-generation computing technologies. Currently, many novel spintronic materials have been developed with unique properties and multifunctionalities, including organic semiconductors (OSCs), organic-inorganic hybrid perovskites (OIHPs), and 2D materials (2DMs). These materials are useful to fulfill the demand for developing diverse and advanced spintronic devices. Herein, these promising materials are systematically reviewed for advanced spintronic applications. Due to the distinct chemical and physical structures of OSCs, OIHPs, and 2DMs, their spintronic properties (spin transport and spin manipulation) are discussed separately. In addition, some multifunctionalities due to photoelectric and chiral-induced spin selectivity (CISS) are overviewed, including the spin-filter effect, spin-photovoltaics, spin-light emitting devices, and spin-transistor functions. Subsequently, challenges and future perspectives of using these multifunctional materials for the development of advanced spintronics are presented.

14.
Opt Express ; 31(8): 12837-12846, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157435

RESUMO

We demonstrate for the first time a strain-controlled all polarization-maintaining (PM) fiber Lyot filter based on a piezoelectric lead zirconate titanate (PZT) fiber stretcher. This filter is implemented in an all-PM mode-locked fiber laser to serve as a novel wavelength-tuning mechanism for fast wavelength sweeping. The center wavelength of the output laser can be tuned across a range from 1540 nm to 1567 nm linearly. And the strain sensitivity achieved in the proposed all-PM fiber Lyot filter is 0.052nm/µÎµ, which is 43 times higher than that achievable by other strain-controlled filters such as a fiber Bragg grating filter (0.0012nm/µÎµ). Wavelength-swept rates up to 500 Hz and wavelength tuning speeds up to 13,000 nm/s are demonstrated, which is hundreds of times faster than what is attainable with conventional sub-picosecond mode-locked lasers based on mechanical tuning methods. This highly repeatable and swift wavelength-tunable all-PM fiber mode-locked laser is a promising source for applications requiring fast wavelength tunability, such as coherent Raman microscopy.

15.
Macromol Rapid Commun ; 44(13): e2300102, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37166003

RESUMO

Organic solar cells (OSCs) have achieved great progress, driven by the rapid development of wide bandgap electron donors and narrow bandgap non-fullerene acceptors (NFAs). Among a large number of electron-accepting (A) building blocks, thiazole (Tz) and its derived fused heterocycles have been widely used to construct photovoltaic materials, especially conjugated polymers. Benefiting from the electron deficiency, rigidity, high planarity, and enhanced intra/intermolecular interactions of Tz-containing heterocycles, some related photovoltaic materials exhibit proper energy levels, optimized molecular aggregation, and active layer morphology, leading to excellent photovoltaic performance. This review focuses on the progress of Tz-based photovoltaic materials in the field of OSCs. First, the Tz-based donor and acceptor photovoltaic materials are reviewed. Then, the materials based on promising Tz-containing heterocycles, mainly including thiazolo[5,4-d]thiazole (TzTz), benzo[1,2-d:4,5-d']bis(thiazole) (BBTz), and benzo[d]thiazole (BTz) are summarized and discussed. In addition, the new emerging Tz-fused structures and their application in OSCs are introduced. Finally, perspectives and outlooks for the further development of Tz-containing heterocycle-based photovoltaic materials are proposed.


Assuntos
Elétrons , Polímeros , Tiazóis
16.
Adv Mater ; 35(31): e2300055, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37021326

RESUMO

Abundant spin-related phenomena that originate from interfaces between ferromagnetic electrodes and molecular semiconductors have greatly enriched research in spintronics, and they are considered promising for realizing novel spintronic functionalities in the future. However, despite great effort, the interfacial effect cannot be precisely controlled to achieve steady and predictable functions, especially at room temperature, and this has gradually become a significant bottleneck in the development of molecular spintronics. In this study, an innovative spin-filtering-competition mechanism is proposed to continuously modulate the interfacial effect in molecular spin valves at room temperature. To form this novel mechanism, the original spin-filtering effect from pure cobalt competes with the newly generated one, which is induced by the bonding effect between cobalt and lithium fluoride. Subsequently, by precisely controlling competition through lithium fluoride coverage on the cobalt surface, continuous modulation of the spin-injection process can be successfully achieved at room temperature. Spin polarization of the injected current and magnetoresistance effect can be actively controlled or their sign can be completely reversed through this novel mechanism. This study provides an innovative approach and theory for precisely controlling spin-related interfacial effects, which may further promote the scientific and technological development of spintronics.

17.
Angew Chem Int Ed Engl ; 62(4): e202213208, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445822

RESUMO

As a new type of inorganic-organic hybrid semiconductor, quantum-confined atomically precise metal nanoclusters (MNCs) have been widely applied in the fields of chemical sensing, optical imaging, biomedicine and catalysis. Herein, we successfully design and fabricate the first example of MNC-based spin valves (SVs) that exhibit remarkable magnetoresistance (MR) value up to 1.6 % even at room temperature (300 K). The concomitant photoresponse of MNC-based SVs unambiguously confirms that the spin-polarized electron transmission takes place across the MNC interlayer. Furthermore, the spin-dependent transport property of MNC-based SVs is largely varied by changing the atomic structure of MNCs. Both experimental proofs and quantum chemistry calculations reveal that the atomic structure-discriminative spin transport behavior is attributed to the distinct spin-orbit coupling (SOC) effect of MNCs.

18.
Proc Natl Acad Sci U S A ; 119(46): e2208804119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343253

RESUMO

Neuronal PER-ARNT-SIM (PAS) domain protein 4 (NPAS4) is a protective transcriptional regulator whose dysfunction has been linked to a variety of neuropsychiatric and metabolic diseases. As a member of the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) transcription factor family, NPAS4 is distinguished by an ability to form functional heterodimers with aryl hydrocarbon receptor nuclear translocator (ARNT) and ARNT2, both of which are also bHLH-PAS family members. Here, we describe the quaternary architectures of NPAS4-ARNT and NPAS4-ARNT2 heterodimers in complexes involving DNA response elements. Our crystallographic studies reveal a uniquely interconnected domain conformation for the NPAS4 protein itself, as well as its differentially configured heterodimeric arrangements with both ARNT and ARNT2. Notably, the PAS-A domains of ARNT and ARNT2 exhibit variable conformations within these two heterodimers. The ARNT PAS-A domain also forms a set of interfaces with the PAS-A and PAS-B domains of NPAS4, different from those previously noted in ARNT heterodimers formed with other class I bHLH-PAS family proteins. Our structural observations together with biochemical and cell-based interrogations of these NPAS4 heterodimers provide molecular glimpses of the NPAS4 protein architecture and extend the known repertoire of heterodimerization patterns within the bHLH-PAS family. The PAS-B domains of NPAS4, ARNT, and ARNT2 all contain ligand-accessible pockets with appropriate volumes required for small-molecule binding. Given NPAS4's linkage to human diseases, the direct visualization of these PAS domains and the further understanding of their relative positioning and interconnections within the NPAS4-ARNT and NPAS4-ARNT2 heterodimers may provide a road map for therapeutic discovery targeting these complexes.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Humanos , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Elementos de Resposta , Multimerização Proteica
19.
ACS Appl Mater Interfaces ; 14(46): 52244-52252, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346919

RESUMO

Dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophene (DTBDT) is a kind of pentacyclic aromatic electron-donating unit with unique optoelectronic properties, but it has received less attention in the design of photovoltaic polymers. In this work, we copolymerized DTBDT with the electron-deficient unit of dithieno[3',2':3,4;2″,3″:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) and obtained two polymers, PE55 and PE56, with a synergistic heteroatom substitution strategy. When blended with the classic nonfullerene acceptor Y6, PE55 and PE56 achieve power conversion efficiencies (PCEs) of 13.78% and 14.49%, respectively, which indicates that the introduction of sulfur atoms on the conjugated side chain of the D unit is a promising method to enhance the performance of DTBDT-based polymers. Besides, we utilize dichloromethane and chloroform to separate the low molecular weight (Mw) fractions in the solvent extraction process to obtain PE55-CF and PE56-CB, and the PCEs are further improved to 15.00% and 16.11%, respectively. The stronger π-π stacking, optimized blend film morphology, and higher charge mobilities contribute to the enhanced PCEs for polymers with higher Mw obtained via the multistep solvent extraction strategy. Our results not only provide a simple and effective way to improve the photovoltaic performance of conjugated polymers but also imply that some reported polymers purified from the traditional one-step solvent extraction method might be seriously underestimated.

20.
ACS Appl Mater Interfaces ; 14(46): 52163-52172, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36355618

RESUMO

Realizing a full life-cycle management for toxic lead (Pb) and reducing material/manufacture cost are the key steps in determining the commercialization process of perovskite photovoltaics. In this work, we develop full lifecycle material management for a carbon-based perovskite solar cell (C-PSC) to immobilize and recover Pb against environmental pollution, followed by refabrication of C-PSC based on recovered materials and recycled transparent conductors from obsolete devices. Pb immobilization is first achieved by a strong coordination interaction between undercoordinated Pb ions from perovskite and a C═O bond from green pseudohalide ions (pseudo-X), and the resulting C-PSC with the structure of ITO/SnO2/pseudo-X-perovskite/carbon yields an efficiency of 16.63%. Pb from an end-of-life C-PSC is then recovered by dissolving the obsolete perovskite layer into DMF/DMSO precursor solvent, followed by replenishing a certain amount of MAI to guarantee new perovskite layer formation. The refabricated C-PSC based on recovered perovskite and a recycled transparent conductor displays comparable efficiency (15.30%) to that of C-PSC with commercial raw materials, also exceeding the previous efficiency record for C-PSCs based on recycled materials. Such refabricated C-PSC is relatively low-cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA