Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Phys Chem Chem Phys ; 26(40): 25861-25869, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39359236

RESUMO

A new hard superconducting phase of RhB4 with the space group Cmca is predicted, and the phase transition and mechanical and superconducting properties of RhB4 under 300 GPa are studied using first principles. We predict a new high-pressure phase of RhB4 by substituting the most stable Cmca structure of OsB4, known for its excellent mechanical properties. The calculated enthalpy shows that above 112.6 GPa, Cmca is superior to Pmmn as was previously predicted by particle swarm optimization. The stability of the predicted phase is checked using formation enthalpy, elastic constant and phonon dispersion. Additionally, the convex hull of the Rh-B system confirms that the phase is expected to be synthesized experimentally. The Cmca phase is an incompressible hard material with a hardness of 23.75 GPa at 300 GPa attributed to strong intralayer covalent B-B bonds. Furthermore, the phase is a relatively pressure-insensitive superconductor, with a Tc of 8.6 K at 112.6 GPa and a pressure-dependent coefficient of -0.03 K GPa-1. The finding reveals a superconducting hard material that is well-suited for extreme high-pressure environments.

2.
ACS Appl Mater Interfaces ; 16(42): 57457-57466, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39390966

RESUMO

While metal halide light-emitting diodes (PeLEDs) with unique optoelectronic properties are promising emitters for next-generation displays, their performance degrades rapidly due to severe ion migration during continuous operation, especially at high voltages. Here, we realize highly stable PeLEDs by designing inorganic dielectric/perovskite semiconductor emitter/organic dielectric sandwiched nanostructures to mitigate ion migration via regulating the electric field distribution. The bilateral cesium carbonate (Cs2CO3) and tetraoctylammonium bromide (TOAB) thin interlayers can not only largely reduce the voltage imposed on the perovskite layer by serving as series resistors and, thus, mitigate the ion migration but also regulate the charge carrier transfer to improve the radiative recombination efficiency. In addition, the underneath inorganic Cs2CO3 film also provides more heterogeneous nucleation sites for growing high-crystallinity perovskite crystals, while the atop TOAB with bifunctional groups (organic amino and Br- ions) refines the morphology and enhances the optical properties of the perovskite film. As a result, efficient and stable green PeLEDs based on such an optoelectric-tunable nanostructure exhibit extremely slow efficiency decay as the applied voltage increases, and the external quantum efficiencies were maintained over 10% at a high bias up to 20 V.

3.
J Phys Chem A ; 128(43): 9476-9485, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39423322

RESUMO

Melting in the deep rocky parts of planets plays an important role in geological processes such as planet formation, seismicity, magnetic field generation, thermal convection, and crustal evolution. Such processes are the key way to understanding the dynamics of planetary interiors and the history as well as mechanisms of planetary evolution. We herein investigate the melting curves and pressure-temperature (P-T)-phase diagrams for CaO3, a candidate mineral for the lower mantle, by means of the deep learning potential model. Using first-principles, molecular dynamics, and quasi-harmonic approximation, the reliability of the deep learning potential model is verified by calculating the high-temperature and high-pressure equations of state and phase transition pressures for the orthorhombic and tetragonal structures of CaO3 described by space groups Aea2 and P4̅21m, respectively. The melting temperatures of 975, 850, and 755 K at zero pressure are obtained by the single-phase, void, and two-phase methods, respectively, and their melting temperatures are analyzed by the radial distribution function and mean-square displacement to analyze the melting process. Finally, the melting phase diagrams of CaO3 at 0-135 GPa were obtained by the two-phase method.

4.
ACS Appl Nano Mater ; 7(20): 23617-23626, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39479554

RESUMO

High performance and high stability in all-inorganic solution processed nanocrystal-based light-emitting diodes (LEDs) are highly attractive for large area devices compared to organic material-based LEDs. In this work, an inverted all-inorganic LED structure is designed to have an easy integration with thin-film transistors. Adopting robust inorganic materials such as Ni1-x O nanoparticle films as a hole transport layer (HTL) is beneficial for the performance of LED. Herein, we have optimized the HTL by introducing Mg into Ni1-x O to bridge the difference in energy offset between the nanorod emissive layer and the HTL, in addition to the advantages of low temperature solubility of Ni1-x O:Mg nanoparticles. Furthermore, CdSe/CdS-based nanorods via electrophoretic deposition (EPD) are amassed in a vertically aligned (VA-NR) fashion as an emissive layer to facilitate the carrier transportation. Fostering these approaches enabled an EQE of 1.2% of the fabricated device, establishing the viability for further development of efficient and highly stable nanocrystal-based LEDs.

5.
Microorganisms ; 12(9)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39338439

RESUMO

To compare the differences in floral composition and functions between the two types of microbiota, ileal contents and feces were collected from Sprague Dawley (SD) rats fed in a conventional or specific-pathogen free (SPF) environment and rats fed a high-fat diet (HFD), and the V3-V4 region of the 16S ribosomal ribonucleic acid (rRNA) gene in these rats was then amplified and sequenced. Compared with feces, about 60% of the bacterial genera in the ileum were exclusive, with low abundance (operational taxonomic units (OTUs) < 1000). Of bacteria shared between the ileum and feces, a few genera were highly abundant (dominant), whereas most had low abundance (less dominant). The dominant bacteria differed between the ileum and feces. Ileal bacteria showed greater ß-diversity, and the distance between in-group samples was nearer than that between paired ileum-feces samples. Moreover, the ileum shared various biomarkers and functions with feces (p < 0.05). The HFD and SPF conditions had a profound influence on α-diversity and abundance but not on the exclusive/shared features or ß-diversity of samples. The present findings suggested that, under conventional circumstances, fecal bacteria can represent approximately 40% of the low abundant ileal bacterial genera and that dominant fecal bacteria failed to represent the ileal dominant flora. Moreover, fecal flora diversity does not reflect ß-diversity in the ileum.

6.
7.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884407

RESUMO

Chiral perovskite materials are being extensively studied as one of the most promising candidates for circularly polarized luminescence (CPL)-related applications. Balancing chirality and photoluminescence (PL) properties is of great importance for enhancing the value of the dissymmetry factor (glum), and a higher glum value indicates better CPL. Chiral perovskite/quantum dot (QD) composites emerge as an effective strategy for overcoming the dilemma that achieving strong chirality and PL in chiral perovskite while at the same time achieving high glum in this composite is very crucial. Here, we choose diphenyl sulfoxide (DPSO) as an additive in the precursor solution of chiral perovskite to regulate the lattice distortion. How structural variation affects the chiral optoelectronic properties of the chiral perovskite has been further investigated. We find that chiral perovskite/CdSe-ZnS QD composites with strong CPL have been achieved, and the calculated maximum |glum| of the composites increased over one order of magnitude after solvent-additive modulation (1.55 × 10-3 for R-DMF/QDs, 1.58 × 10-2 for R-NMP-DPSO/QDs, -2.63 × 10-3 for S-DMF/QDs, and -2.65 × 10-2 for S-NMP-DPSO/QDs), even at room temperature. Our findings suggest that solvent-additive modulation can effectively regulate the lattice distortion of chiral perovskite, enhancing the value of glum for chiral perovskite/CdSe-ZnS QD composites.

8.
ACS Appl Mater Interfaces ; 16(8): 10459-10467, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358426

RESUMO

Inverted colloidal-nanocrystal-based LEDs (NC-LEDs) are highly interesting and invaluable for large-scale display technology and flexible electronics. Semiconductor nanorods (NRs), in addition to the tunable wavelengths of the emitted light (achieved, for example, by the variation of the NR diameter or the diameter of core in a core-shell configuration), also exhibit linearly polarized emission, a larger Stokes shift, faster radiative decay, and slower bleaching kinetics than quantum dots (QDs). Despite these advantages, it is difficult to achieve void-free active NR layers using simple spin-coating techniques. Herein, we employ electrophoretic deposition (EPD) to make closely packed, vertically aligned CdSe/CdS core/shell nanorods (NRs) as the emissive layer. Following an inverted architecture, the device fabricated yields an external quantum efficiency (EQE) of 6.3% and a maximum luminance of 4320 cd/m2 at 11 V. This good performance can be attributed to the vertically aligned NR layer, enhancing the charge transport by reducing the resistance of carrier passage, which is supported by our finite element simulations. To the best of our knowledge, this is the first time vertically aligned NR layers made by EPD have been reported for the fabrication of NC-LEDs and the device performance is one of the best for inverted red NR-LEDs. The findings presented in this work bring forth a simple and effective technique for making vertically aligned NRs, and the mechanism behind the NR-LED device with enhanced performance using these NRs is illustrated. This technique may prove useful to the development of a vast class of nanocrystal-based optoelectronics, including solar cells and laser devices.

9.
Phys Chem Chem Phys ; 26(7): 6351-6361, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315085

RESUMO

The exploration of the physical attributes of the recently discovered orthocarbonate Sr3CO5 is significant for comprehending the carbon cycle and storage mechanisms within the Earth's interior. In this study, first-principles calculations are initially used to examine the structural phase transitions of Sr3CO5 polymorphs within the range of lower mantle pressures. The results suggest that Sr3CO5 with the Cmcm phase exhibits a minimal enthalpy between 8.3 and 30.3 GPa. As the pressure exceeds 30.3 GPa, the Cmcm phase undergoes a transition to the I4/mcm phase, while the experimentally observed Pnma phase remains metastable under our studied pressure. Furthermore, the structural data of SrO, SrCO3, and Sr3CO5 polymorphs are utilized to develop a deep learning potential model suitable for the Sr-C-O system, and the pressure-volume relationship and elastic constants calculated using the potential model are in line with the available results. Subsequently, the elastic properties of Cmcm and I4/mcm phases in Sr3CO5 at high temperature and pressure are calculated using the molecular dynamics method. The results indicate that the I4/mcm phase exhibits higher temperature sensitivity in terms of elastic moduli and wave velocities compared to the Cmcm phase. Finally, the thermodynamic properties of the Cmcm and I4/mcm phases are predicted in the range of 0-2000 K and 10-120 GPa, revealing that the heat capacity and bulk thermal expansion coefficient of both phases increase with temperature, with the constant volume heat capacity gradually approaching the Dulong-Petit limit as the temperature rises.

10.
J Phys Chem Lett ; 15(7): 2039-2048, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38350008

RESUMO

Currently, the external quantum efficiency (EQE) performance of perovskite light-emitting diodes (PeLEDs) is approaching its theoretical limit. The main drawback of PeLEDs is their stability. Ion migration in the perovskite layer is one of the main causes of the operational decomposition of PeLEDs. Here, we find that butylammonium-based quasi-two-dimensional (quasi-2D) PeLEDs show self-healing ability, revealing the existence of ion migration in the fabricated perovskite layer. Then, on the basis of the analysis of ∼170 operational decay EQE curves, patterns of on-shelf and operational decay in self-healing quasi-2D PeLEDs have been identified. The uneven distributions of resistance on the perovskite film surface are proposed to cause secondary electric fields. The electroluminescent scintillation in certain regions results in fluctuating electroluminescence of PeLEDs, further proving the existence of microcosmic steric ion movement under secondary electric fields. Our work explores the decay patterns of self-healing PeLEDs and highlights the impact of steric ion movements on the decay processes of PeLEDs.

11.
Nat Med ; 30(2): 552-559, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38167937

RESUMO

Perioperative chemotherapy is the standard treatment for locally advanced gastric or gastro-esophageal junction cancer, and the addition of programmed cell death 1 (PD-1) inhibitor is under investigation. In this randomized, open-label, phase 2 study (NEOSUMMIT-01), patients with resectable gastric or gastro-esophageal junction cancer clinically staged as cT3-4aN + M0 were randomized (1:1) to receive either three preoperative and five postoperative 3-week cycles of SOX/XELOX (chemotherapy group, n = 54) or PD-1 inhibitor toripalimab plus SOX/XELOX, followed by toripalimab monotherapy for up to 6 months (toripalimab plus chemotherapy group, n = 54). The primary endpoint was pathological complete response or near-complete response rate (tumor regression grade (TRG) 0/1). The results showed that patients in the toripalimab plus chemotherapy group achieved a higher proportion of TRG 0/1 than those in the chemotherapy group (44.4% (24 of 54, 95% confidence interval (CI): 30.9%-58.6%) versus 20.4% (11 of 54, 95% CI: 10.6%-33.5%)), and the risk difference of TRG 0/1 between toripalimab plus chemotherapy group and chemotherapy group was 22.7% (95% CI: 5.8%-39.6%; P = 0.009), meeting a prespecified endpoint. In addition, a higher pathological complete response rate (ypT0N0) was observed in the toripalimab plus chemotherapy group (22.2% (12 of 54, 95% CI: 12.0%-35.6%) versus 7.4% (4 of 54, 95% CI: 2.1%-17.9%); P = 0.030), and surgical morbidity (11.8% in the toripalimab plus chemotherapy group versus 13.5% in the chemotherapy group) and mortality (1.9% versus 0%), and treatment-related grade 3-4 adverse events (35.2% versus 29.6%) were comparable between the treatment groups. In conclusion, the addition of toripalimab to chemotherapy significantly increased the proportion of patients achieving TRG 0/1 compared to chemotherapy alone and showed a manageable safety profile. ClinicalTrials.gov registration: NCT04250948 .


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Adenocarcinoma/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Anticorpos Monoclonais Humanizados/efeitos adversos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
12.
Phys Chem Chem Phys ; 26(3): 2629-2637, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174360

RESUMO

Using first-principles calculations, we predicted three novel superhard semiconducting structures of C8B2N2 with a space group of P3m1. We investigated their mechanical properties and electronic structures up to 100 GPa. These three structures were successfully derived by substituting carbon (C) atoms with isoelectronic boron (B) and nitrogen (N) atoms in the P3m1 phase, which is the most stable structure of BCN and exhibits exceptional mechanical properties. Our results indicated that these structures had superior energy over previously reported t-C8B2N2, achieved by replacing C atoms in the diamond supercell with B and N atoms. To ensure their stable existence, we thoroughly examined their mechanical and dynamical stabilities, and we found that their hardness values reached 82.4, 83.1, and 82.0 GPa, which were considerably higher than that of t-C8B2N2 and even surpassing the hardness of c-BN. Calculations of the electron localization function revealed that the stronger carbon-carbon covalent bonds made them much harder than t-C8B2N2. Additionally, our further calculations of band structures revealed that these materials had indirect bandgaps of 4.164, 4.692, and 3.582 eV. These findings suggest that these materials have the potential to be used as superhard semiconductors, potentially surpassing conventional superhard materials.

14.
RSC Adv ; 14(2): 1216-1228, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174231

RESUMO

The potential applications of Ir2P are promising due to its desirable hardness, but its fundamental properties are still not fully understood. In this study, we present a systematic investigation of Ir2P's structural, electronic, superconducting, optical, and thermodynamic properties of Ir2P under pressure. Our calculations show that Ir2P has a Fm3̄m structure at ambient pressure, which matches well with experimental data obtained from high-pressure synchrotron X-ray diffraction. As pressure increases, a transition from the Fm3̄m to the I4/mmm phase occurs at 103.4 GPa. The electronic structure and electron-phonon coupling reveal that the Fm3̄m and I4/mmm phases of Ir2P are superconducting materials with superconducting transition temperatures of 2.51 and 0.89 K at 0 and 200 GPa, respectively. The optical properties of Ir2P indicate that it has optical conductivity in the infrared, visible, and ultraviolet regions. Additionally, we observed that the reflectivity R(ω) of Ir2P is higher than 76% in the 25-35 eV energy range at different pressures, which suggests that it could be used as a reflective coating. We also explored the finite-temperature thermodynamic properties of Ir2P, including the Debye temperature, the first and second pressure derivatives of the isothermal bulk modulus, and the thermal expansion coefficient up to 2000 K using the quasi-harmonic Debye model. Our findings offer valuable insights for engineers to design better devices.

15.
Adv Mater ; 36(5): e2305604, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37789724

RESUMO

Chiral-induced spin selectivity (CISS) effect provides innovative approach to spintronics and quantum-based devices for chiral materials. Different from the conventional ferromagnetic devices, the application of CISS effect is potential to operate under room temperature and zero applied magnetic field. Low dimensional chiral perovskites by introducing chiral amines are beginning to show significant CISS effect for spin injection, but research on chiral perovskites is still in its infancy, especially on spin-light emitting diode (spin-LED) construction. Here, the spin-QLEDs enabled by 2D chiral perovskites as CISS layer for spin-dependent carrier injection and CdSe/ZnS quantum dots (QDs) as light emitting layer are reported. The regulation pattern of the chirality and thickness of chiral perovskites, which affects the circularly polarized electroluminescence (CP-EL) emission of spin-QLED, is discovered. Notably, the spin injection polarization of 2D chiral perovskites is higher than 80% and the CP-EL asymmetric factor (gCP-EL ) achieves up to 1.6 × 10-2 . Consequently, this work opens up a new and effective approach for high-performance spin-LEDs.

16.
Small ; 20(13): e2307298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972284

RESUMO

As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m-2. Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO-QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs.

17.
Cancer Commun (Lond) ; 43(12): 1312-1325, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837629

RESUMO

BACKGROUND: Circulating tumor DNA (ctDNA) is a promising biomarker for predicting relapse in multiple solid cancers. However, the predictive value of ctDNA for disease recurrence remains indefinite in locoregional gastric cancer (GC). Here, we aimed to evaluate the predictive value of ctDNA in this context. METHODS: From 2016 to 2019, 100 patients with stage II/III resectable GC were recruited in this prospective cohort study (NCT02887612). Primary tumors were collected during surgical resection, and plasma samples were collected perioperatively and within 3 months after adjuvant chemotherapy (ACT). Somatic variants were captured via a targeted sequencing panel of 425 cancer-related genes. The plasma was defined as ctDNA-positive only if one or more variants detected in the plasma were presented in at least 2% of the primary tumors. RESULTS: Compared with ctDNA-negative patients, patients with positive postoperative ctDNA had moderately higher risk of recurrence [hazard ratio (HR) = 2.74, 95% confidence interval (CI) = 1.37-5.48; P = 0.003], while patients with positive post-ACT ctDNA showed remarkably higher risk (HR = 14.99, 95% CI = 3.08-72.96; P < 0.001). Multivariate analyses indicated that both postoperative and post-ACT ctDNA positivity were independent predictors of recurrence-free survival (RFS). Moreover, post-ACT ctDNA achieved better predictive performance (sensitivity, 77.8%; specificity, 90.6%) than both postoperative ctDNA and serial cancer antigen. A comprehensive model incorporating ctDNA for recurrence risk prediction showed a higher C-index (0.78; 95% CI = 0.71-0.84) than the model without ctDNA (0.71; 95% CI = 0.64-0.79; P = 0.009). CONCLUSIONS: Residual ctDNA after ACT effectively predicts high recurrence risk in stage II/III GC, and the combination of tissue-based and circulating tumor features could achieve better risk prediction.


Assuntos
DNA Tumoral Circulante , Neoplasias Gástricas , Humanos , Quimioterapia Adjuvante , DNA Tumoral Circulante/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Estudos de Coortes
18.
Sci Rep ; 13(1): 11422, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452105

RESUMO

Orthorhombic Ca2CO4 is a recently discovered orthocarbonate whose high-pressure physical properties are critical for understanding the deep carbon cycle. Here, we study the structure, elastic and seismic properties of Ca2CO4-Pnma at 20-140 GPa using first-principles calculations, and compare them with the results of CaCO3 polymorphs. The results show that the structural parameters of Ca2CO4-Pnma are in good agreement with the experimental results. It could be the potential host of carbon in the Earth's mantle subduction slab, and its low wave velocity and small anisotropy may be the reason why it cannot be detected in seismic observation. The thermodynamic properties of Ca2CO4-Pnma at high temperature and high pressure are obtained using the quasi-harmonic approximation method. This study is helpful in understanding the behavior of Ca-carbonate in the Earth's lower mantle conditions.


Assuntos
Ciclo do Carbono , Carbono , Fenômenos Físicos , Termodinâmica , Anisotropia
19.
J Phys Condens Matter ; 35(37)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285851

RESUMO

Separate relaxation dynamics of electrons and holes in experiments on optical pumping-probing of semiconductors is rarely observed due to their overlap. Here we report the separate relaxation dynamics of long-lived (∼200µs) holes observed at room temperature in a 10 nm thick film of the 3D topological insulator (TI) Bi2Se3coated with a 10 nm thick MgF2layer using transient absorption spectroscopy in the UV-Vis region. The ultraslow hole dynamics was observed by applying resonant pumping of massless Dirac fermions and bound valence electrons in Bi2Se3at a certain wavelength sufficient for their multiphoton photoemission and subsequent trapping at the Bi2Se3/MgF2interface. The emerging deficit of electrons in the film makes it impossible for the remaining holes to recombine, thus causing their ultraslow dynamics measured at a specific probing wavelength. We also found an extremely long rise time (∼600 ps) for this ultraslow optical response, which is due to the large spin-orbit coupling splitting at the valence band maximum and the resulting intervalley scattering between the splitting components. The observed dynamics of long-lived holes is gradually suppressed with decreasing Bi2Se3film thickness for the 2D TI Bi2Se3(film thickness below 6 nm) due to the loss of resonance conditions for multiphoton photoemission caused by the gap opening at the Dirac surface state nodes. This behavior indicates that the dynamics of massive Dirac fermions predominantly determines the relaxation of photoexcited carriers for both the 2D topologically nontrivial and 2D topologically trivial insulator phases.

20.
Sci Rep ; 13(1): 7057, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120441

RESUMO

A two-dimensional phononic crystal sensor model with high-quality factor and excellent sensitivity for sensing acetone solutions and operating at 25-45 kHz is proposed. The model for filling solution cavities is based on reference designs of quasi-crystal and gradient cavity structures. The transmission spectrum of sensor is simulated by the finite element method. High-quality factor of 45,793.06 and sensitivity of 80,166.67 Hz are obtained for the acetone concentration with 1-9.1%, and quality factor of 61,438.09 and sensitivity of 24,400.00 Hz are obtained for the acetone concentration range of 10-100%, which indicated the sensor could still achieve high sensitivity and quality factor at operating frequencies from 25 to 45 kHz. To verify the application of the sensor to sensing other solutions, the sensitivity for sound velocity and density is calculated as 24.61 m-1 and 0.7764 m3/(kg × s), respectively. It indicates the sensor is sensitive to acoustic impedance changes of the solution and equally suitable for sensing other solutions. The simulation results reveal the phononic crystal sensor possessed high-performance in composition capture in pharmaceutical production and petrochemical industry, which can provide theoretical reference for the design of new biochemical sensors for reliable detection of solution concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA