Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2400347, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573812

RESUMO

Suppressing trap-assisted nonradiative losses through passivators is a prerequisite for efficient perovskite light-emitting diodes (PeLEDs). However, the complex bonding between passivators and perovskites severely suppresses the passivation process, which still lacks comprehensive understanding. Herein, the number, category, and degree of bonds between different functional groups and the perovskite are quantitatively assessed to study the passivation dynamics. Functional groups with high electrostatic potential and large steric hindrance prioritize strong bonding with organic cations and halides on the perfect surface, leading to suppressed coordination with bulky defects. By modulating the binding priorities and coordination capacity, hindrance from the intense interaction with perfect perovskite is significantly reduced, leading to a more direct passivation process. Consequently, the near-infrared PeLED without external light out-coupling demonstrates a record external quantum efficiency of 24.3% at a current density of 42 mA cm-2. In addition, the device exhibits a record-level-cycle ON/OFF switching of 20 000 and ultralong half-lifetime of 1126.3 h under 5 mA cm-2. An in-depth understanding of the passivators can offer new insights into the development of high-performance PeLEDs.

2.
Adv Sci (Weinh) ; 11(18): e2309500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447143

RESUMO

The inefficient charge transport and large exciton binding energy of quasi-2D perovskites pose challenges to the emission efficiency and roll-off issues for perovskite light-emitting diodes (PeLEDs) despite excellent stability compared to 3D counterparts. Herein, alkyldiammonium cations with different molecular sizes, namely 1,4-butanediamine (BDA), 1,6-hexanediamine (HDA) and 1,8-octanediamine (ODA), are employed into quasi-2D perovskites, to simultaneously modulate the injection efficiency and recombination dynamics. The size increase of the bulky cation leads to increased excitonic recombination and also larger Auger recombination rate. Besides, the larger size assists the formation of randomly distributed 2D perovskite nanoplates, which results in less efficient injection and deteriorates the electroluminescent performance. Moderate exciton binding energy, suppressed 2D phases and balanced carrier injection of HDA-based PeLEDs contribute to a peak external quantum efficiency of 21.9%, among the highest in quasi-2D perovskite based near-infrared devices. Besides, the HDA-PeLED shows an ultralong operational half-lifetime T50 up to 479 h at 20 mA cm‒2, and sustains the initial performance after a record-level 30 000 cycles of ON-OFF switching, attributed to the suppressed migration of iodide anions into adjacent layers and the electrochemical reaction in HDA-PeLEDs. This work provides a potential direction of cation design for efficient and stable quasi-2D-PeLEDs.

3.
Analyst ; 148(12): 2717-2724, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37232084

RESUMO

The early diagnosis and real-time prognosis of cardiovascular diseases (CVDs) at the bedside are important. However, real-time detection of myocardial infarction involves the use of large-scale instrumentation and long test times. Herein, a simple, rapid and sensitive lateral flow immunochromatographic strip (LFIS) based on Yb/Er co-doped NaYF4 upconversion nanoparticles (UCNPs) was demonstrated for use in the detection of myocardial infarction. First, through heavy Yb/Er doping and an inert NaYF4 shell coating on the nanoparticles, the surface-related luminescence quenching effect of UCNPs was eliminated to enhance the upconversion luminescence. Second, through uniform coating of a SiO2 layer on the UCNPs, the biological affinity was improved to couple UCNPs and antibody proteins. Finally, through modification and activation with a specific antibody protein (serum amyloid A (SAA)), the UCNPs exhibited intense upconversion luminescence and high specificity when applied as a lateral flow immunochromatographic strip (LFIS). The developed UC-LFIS was highly sensitive (0.1 µg mL-1) and specific for detecting SAA in only 10 µL of serum. The UC-LFIS holds great potential for the early diagnosis and prognosis of CVDs.


Assuntos
Luminescência , Nanopartículas , Proteína Amiloide A Sérica , Dióxido de Silício , Nanopartículas/química , Prognóstico
4.
Angew Chem Int Ed Engl ; 58(48): 17255-17259, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31523889

RESUMO

Thermal quenching of photoluminescence represents a significant obstacle to practical applications such as lighting, display, and photovoltaics. Herein, a novel strategy is established to enhance upconversion luminescence at elevated temperatures based on the use of negative thermal expansion host materials. Lanthanide-doped orthorhombic Yb2 W3 O12 crystals are synthesized and characterized by in situ X-ray diffraction and photoluminescence spectroscopy. The thermally induced contraction and distortion of the host lattice is demonstrated to enhance the collection of excitation energy by activator ions. When the temperature is increased from 303 to 573 K, a 29-fold enhancement of green upconversion luminescence in Er3+ activators is achieved. Moreover, the temperature dependence of the upconversion luminescence is reversible. The thermally enhanced upconversion is developed as a sensitive ratiometric thermometer by referring to a thermally quenched upconversion.

5.
Phys Chem Chem Phys ; 20(37): 23942-23947, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30209460

RESUMO

By adjusting the content of ZnF2-SrF2/ZnO-SrO, a series of SiO2-Al2O3-B2O3-Na2O-ZnO/ZnF2-SrO/SrF2-Ag multiphase glasses was designed and prepared via a melt-quenching method. Under a phase separation strategy, negatively charged tetrahedrons ([BO4]-, [ZnO4]2-, and [AlO4]-) can be generated to stabilize different silver species (Ag+ ions; [Ag2]2+ pairs; [Agm]n+ quantum clusters ([Agm]n+ QCs)) in B2O3-rich and ZnO-Al2O3 rich sub-phases. The B2O3-rich sub-phase has a high solubility for Ag+ ions and [Agm]n+ QCs. The fluoride-rich phase shows a good ability to extract Na+ from the B2O3-rich sub-phase, significantly affects the solubility of Ag+ in the B2O3-rich sub-phase, and eventually determines the aggregation from Ag+ ions and Ag0 atom to [Agm]n+ QCs. The ZnO-Al2O3-rich or ZnO-SiO2-rich (i.e. SiO2-rich in GZnOSrO) phase has a relatively high solubility for [Ag2]2+ pairs. The Ag+/[Ag2]2+/[Agm]n+ QC fluorescent centers were identified by spectroscopic analysis, where the fluorescence bands are located in the ultraviolet, green-white and orange spectral regions, respectively. The fluorescent quantum yield (QY) of the [Agm]n+ QCs can be improved to 55.7%, and the combination of these three luminescent centers can achieve white light emission.

6.
Dalton Trans ; 47(26): 8581-8584, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-29479629

RESUMO

A core-shell-shell nanostructure composed of NaGdF4:Yb/Tm@NaGdF4:Nd@NaYF4 is developed to realize Yb3+-sensitized upconversion and downshifting luminescence in Nd3+ ions. The unusual photon conversion property stems from a gadolinium sublattice mediated Yb3+→ Tm3+→ Gd3+→ Nd3+ energy transfer pathway. The energy transfer processes are investigated by varying the dopant concentration and distribution, in conjunction with time decay measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA