Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Technol ; : 1-11, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955504

RESUMO

As volatile organic compounds (VOCs), gaseous ethylbenzene has adverse effects on human health and ecology. Therefore, an effective degradation process is highly desirable. The Fenton process under UV 365 nm was selected as the first option to remove gaseous ethylbenzene in a bubble column reactor. The main parameters for the batch experiments were systematically studied, including H2O2 concentration, [H2O2]/[Fe2+], pH, UV wavelength, UV intensity, gaseous ethylbenzene concentration, gas flow rate, and process stability towards removal efficiency. The optimum conditions were found to be H2O2 concentration of 100 mmol·L-1, [H2O2]/[Fe2+] of 4, pH of 3.0, UV wavelength of 365 nm, UV power of 5 W, gas flow rate of 900 mL·min-1, and gaseous ethylbenzene concentration of 30 ppm, resulting in a removal efficiency of 76.3%. The study found that the Fenton process, when coupled with UV 365 nm, was highly effective in removing gaseous ethylbenzene. The degradation mechanism of gaseous ethylbenzene was proposed in the UV365/Fenton process based on EPR, radical quenching experiments, iron analysis, carbon balance, and GC-MS analysis. The results indicated that •OH played a crucial role in the process.

2.
Cancer Biol Med ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940672

RESUMO

OBJECTIVE: Radiotherapy has achieved remarkable effects in treating non-small cell lung cancer (NSCLC). However, radioresistance remains the major obstacle to achieving good outcomes. This study aims at identifying potential targets for radiosensitizing NSCLC and elucidating the underlying mechanisms. METHODS: Lentivirus-based infection and CRISPR/Cas9 technology were used to modulate the expression of microRNA-384 (miR-384). Cell clonogenic formation assays and a xenograft tumor model were used to analyze radiosensitivity in NSCLC cells. Fluorescence-activated cell sorting was used to assess the cell cycle and cell death. Immunofluorescence staining, Comet assays, and homologous recombination or non-homologous end-joining I-SceI/GFP reporter assays were used to study DNA damage and repair. Western blotting and quantitative real-time polymerase chain reaction were used to identify the targets of miR-384. Chromatin immunoprecipitation and polymerase chain reaction were performed to evaluate upstream regulators of miR-384. RESULTS: MiR-384 was downregulated in NSCLC. Overexpression of miR-384 increased the radiosensitivity of NSCLC cells in vitro and in vivo, whereas knockout of miR-384 led to radioresistance. Upregulation of miR-384 radiosensitized NSCLC cells by decreasing G2/M cell cycle arrest, inhibiting DNA damage repair, and consequently increasing cell death; miR-384 depletion had the opposite effects. Further investigation revealed that ATM, Ku70, and Ku80 were direct targets of miR-384. Moreover, miR-384 was repressed by NF-κB. CONCLUSIONS: MiR-384 is an ionizing radiation-responsive gene repressed by NF-κB. MiR-384 enhances the radiosensitivity of NSCLC cells via targeting ATM, Ku80, and Ku70, which impairs DNA damage repair. Therefore, miR-384 may serve as a novel radiosensitizer for NSCLC.

3.
Cancer Lett ; 595: 217000, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38821254

RESUMO

Radiotherapy is one of the predominant treatment modalities for almost all kinds of malignant cancers, including non-small cell lung cancer (NSCLC). Increasing evidence shows that ionizing radiation (IR) induces reactive oxygen species (ROS) leading to lipid peroxidation and subsequently ferroptosis of cancer cells. However, cancer cells evolve multiple mechanisms against ROS biology resulting in resistance to ferroptosis and radiotherapy, of which NRF2 signaling is one of the most studied. In the current research, we identified that microRNA-139 (miR-139) could be a novel radiosensitizer for NSCLC by inhibiting NRF2 signaling. We found that miR-139 possessed great potential as a diagnostic biomarker for NSCLC and multiple other types of cancer. Overexpression of miR-139 increased radiosensitivity of NSCLC cells in vitro and in vivo. MiR-139 directly targeted cJUN and KPNA2 to impair NRF2 signaling resulting in enhanced IR-induced lipid peroxidation and cellular ferroptosis. We proved KPNA2 to be a binding partner of NRF2 that involved in nuclear translocation of NRF2. Moreover, we found that IR induced miR-139 expression through transcriptional factor EGR1. EGR1 bound to the promoter region and transactivated miR-139. Overall, our findings elucidated the effect of EGR1/miR-139/NRF2 in IR-induced ferroptosis of NSCLC cells and provided theoretical support for the potential diagnostic biomarkers and therapeutic targets for the disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína 1 de Resposta de Crescimento Precoce , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , Fator 2 Relacionado a NF-E2 , Tolerância a Radiação , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ferroptose/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Tolerância a Radiação/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Camundongos Nus , Feminino
4.
ISME Commun ; 4(1): ycae070, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38808123

RESUMO

Nitrous oxide (N2O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N2O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N2O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N2O assessed N2O reduction at pH 4.5 and 7.3. All microcosms consumed N2O, with lag times of up to 7 months observed in microcosms with 2 mM N2O. Comparative metagenome analysis revealed that Rhodocyclaceae dominated in circumneutral microcosms under both N2O feeding regimes. At pH 4.5, Peptococcaceae dominated in high-N2O, and Hyphomicrobiaceae in low-N2O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N2O-reducing microcosms harbored nos operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type nosZ and lacking nitrite reductase genes (nirS/K). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N2O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5-5.7 soil metagenome datasets revealed that nosZ genes commonly occur, suggesting broad distribution of N2O reduction potential in acidic soils.

5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447133

RESUMO

Methane (CH4) and nitrous oxide (N2O) are major greenhouse gases that are predominantly generated by microbial activities in anoxic environments. N2O inhibition of methanogenesis has been reported, but comprehensive efforts to obtain kinetic information are lacking. Using the model methanogen Methanosarcina barkeri strain Fusaro and digester sludge-derived methanogenic enrichment cultures, we conducted growth yield and kinetic measurements and showed that micromolar concentrations of N2O suppress the growth of methanogens and CH4 production from major methanogenic substrate classes. Acetoclastic methanogenesis, estimated to account for two-thirds of the annual 1 billion metric tons of biogenic CH4, was most sensitive to N2O, with inhibitory constants (KI) in the range of 18-25 µM, followed by hydrogenotrophic (KI, 60-90 µM) and methylotrophic (KI, 110-130 µM) methanogenesis. Dissolved N2O concentrations exceeding these KI values are not uncommon in managed (i.e. fertilized soils and wastewater treatment plants) and unmanaged ecosystems. Future greenhouse gas emissions remain uncertain, particularly from critical zone environments (e.g. thawing permafrost) with large amounts of stored nitrogenous and carbonaceous materials that are experiencing unprecedented warming. Incorporating relevant feedback effects, such as the significant N2O inhibition on methanogenesis, can refine climate models and improve predictive capabilities.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Ecossistema , Retroalimentação , Dióxido de Carbono/análise , Solo , Metano/análise
6.
Appl Environ Microbiol ; 89(12): e0165123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054734

RESUMO

IMPORTANCE: Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean. We found that the coastal ocean harbors distinct bacterial taxa implicated in CDA degradation and these taxa have not been previously identified in prior CDA degradation studies, indicating an unexplored diversity of CDA-degrading bacteria in the ocean. Moreover, the shape of the plastic article (e.g., a fabric, film, or foam) and plasticizer in the plastic matrix selected for different microbial communities. Our findings pave the way for future studies to identify the specific species and enzymes that drive CDA degradation in the marine environment, ultimately yielding a more predictive understanding of CDA biodegradation across space and time.


Assuntos
Microbiota , Plásticos , Biopolímeros , Bactérias/genética , Biodegradação Ambiental , Oceanos e Mares
7.
Environ Sci Technol ; 57(42): 15925-15935, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37647029

RESUMO

Pseudomonas sp. strain 273 grows with medium-chain terminally fluorinated alkanes under oxic conditions, releases fluoride, and synthesizes long-chain fluorofatty acids. To shed light on the genes involved in fluoroalkane metabolism, genome, and transcriptome sequencing of strain 273 grown with 1,10-difluorodecane (DFD), decane, and acetate were performed. Strain 273 harbors three genes encoding putative alkane monooxygenases (AlkB), key enzymes for initiating alkane degradation. Transcripts of alkB-2 were significantly more abundant in both decane- and DFD-grown cells compared to acetate-grown cells, suggesting AlkB-2 catalyzes the attack on terminal CH3 and CH2F groups. Coordinately expressed with alkB-2 was an adjacent gene encoding a fused ferredoxin-ferredoxin reductase (Fd-Fdr). Phylogenetic analysis distinguished AlkB that couples with fused Fd-Fdr reductases from AlkB with alternate architectures. A gene cluster containing an (S)-2-haloacid dehalogenase (had) gene was up-regulated in cells grown with DFD, suggesting a possible role in the removal of the ω-fluorine. Genes involved in long-chain fatty acid biosynthesis were not differentially expressed during growth with acetate, decane, or DFD, suggesting the bacterium's biosynthetic machinery does not discriminate against monofluoro-fatty acid intermediates. The analysis sheds first light on genes and catalysts involved in the microbial metabolism of fluoroalkanes.

8.
Environ Sci Technol ; 57(14): 5655-5665, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976621

RESUMO

Climate warming causes permafrost thaw predicted to increase toxic methylmercury (MeHg) and greenhouse gas [i.e., methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)] formation. A microcosm incubation study with Arctic tundra soil over 145 days demonstrates that N2O at 0.1 and 1 mM markedly inhibited microbial MeHg formation, methanogenesis, and sulfate reduction, while it slightly promoted CO2 production. Microbial community analyses indicate that N2O decreased the relative abundances of methanogenic archaea and microbial clades implicated in sulfate reduction and MeHg formation. Following depletion of N2O, both MeHg formation and sulfate reduction rapidly resumed, whereas CH4 production remained low, suggesting that N2O affected susceptible microbial guilds differently. MeHg formation strongly coincided with sulfate reduction, supporting prior reports linking sulfate-reducing bacteria to MeHg formation in the Arctic soil. This research highlights complex biogeochemical interactions in governing MeHg and CH4 formation and lays the foundation for future mechanistic studies for improved predictive understanding of MeHg and greenhouse gas fluxes from thawing permafrost ecosystems.


Assuntos
Gases de Efeito Estufa , Compostos de Metilmercúrio , Solo , Compostos de Metilmercúrio/análise , Ecossistema , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise , Tundra , Metano/análise , Sulfatos/análise , Regiões Árticas
9.
Water Res ; 235: 119787, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36917870

RESUMO

Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 µmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10-35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.


Assuntos
Compostos de Manganês , Óxidos , Oxirredução , Óxidos/química , Compostos de Manganês/química , Fenóis/química , Compostos Benzidrílicos/química
10.
Thorac Cancer ; 14(11): 969-982, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36814090

RESUMO

Metastasis is the major cause of cancer-related death of cancer patients. Epithelial-mesenchymal transition (EMT) is one critical process during the cascade of tumor metastasis. EMT is a developmental program exploited by cancer cells to transition from epithelial state to mesenchymal state and confers metastatic properties as well as treatment resistance. Finding factors to inhibit EMT will greatly improve the prognosis patients. Spermatogenesis associated 2 (SPATA2) was originally isolated from human testis and proved playing a role in spermatogenesis. To date, however, the role of SPATA2 in oncogenesis is unknown. In the current study, by mining the public database and validating in a cohort of collected non-small cell lung cancer (NSCLC) specimens, we uncovered that the expression of SPATA2 positively correlated with the prognosis of patients and was an independent prognosis marker in NSCLC. Functional studies proved that ectopic overexpression of SPATA2 inhibited EMT resulting in impaired motility and invasiveness properties in vitro and metastasis in vivo, and increased radiosensitivity in NSCLC. Mechanistic investigation showed that SPATA2 could suppress the ß-catenin signaling via attenuating DVL1 ubiquitination to achieve the functions. Taken together, the current study revealed an inhibitory role of SPATA2 on EMT and that SPATA2 could be a potential target for therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Testículo/metabolismo , Testículo/patologia , Tolerância a Radiação , Espermatogênese , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , Proteínas
11.
Waste Manag ; 150: 202-207, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850005

RESUMO

The United States (U.S.) aims to reduce half of food loss and waste (FLW) by 2030. To achieve this goal, the public, academic, and political attentions on FLW have been increasing, and a series of actions have been implemented. However, the actions lack consideration on the categorical priority of FLW mitigation in relation to environmental footprints. In this article, we compare the FLW of three main plant food categories (i.e., grains, vegetables, and fruits) and their water and carbon footprints during 1970-2017. The vegetable FLW doubled during the period, reaching 3.39 × 1010 kg in 2017, which was 5- and 2-fold higher than the FLW of grains and fruits, respectively. The FLW of vegetables, grains, and fruits contributed 29%, 47%, and 24% to the total blue water wasted through FLW. The total carbon dioxide emissions generated by plant FLW were contributed by vegetables with 50%, grains with 31%, and fruits with 19%. Canonical correspondence analysis indicates that vegetable FLW had a higher positive correlation with urbanization, household incomes, gross domestic product, and high-income population than grain FLW, whereas fruit FLW was not influenced by these socioeconomic factors. Therefore, we suggest that the FLW mitigation should be prioritized on vegetables. Specific strategies include local food sourcing, shortening food miles, building food belts, and developing controlled-environment agriculture. Our data-based comparisons provide valuable insights into food policy improvement for achieving the 2030 reduction goal of the U.S., but the insights could be improved by considering the influences of foods imported from other nations.


Assuntos
Frutas , Verduras , Pegada de Carbono , Abastecimento de Alimentos , Estados Unidos , Água
12.
Environ Sci Technol ; 55(19): 13014-13023, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34559517

RESUMO

Bisphenol A (BPA), a high production volume chemical and potential endocrine disruptor, is found to be associated with sediments and soils due to its hydrophobicity (log KOW of 3.42). We used superfine powdered activated carbon (SPAC) with a particle size of 1.38 ± 0.03 µm as a BPA sorbent and assessed degradation of BPA by oxidized manganese (Mn) species. SPAC strongly sorbed BPA, and desorption required organic solvents. No degradation of adsorbed BPA (278.7 ± 0.6 mg BPA g-1 SPAC) was observed with synthetic, solid α-MnO2 with a particle size of 15.41 ± 1.35 µm; however, 89% mass reduction occurred following the addition of 0.5 mM soluble Mn(III). Small-angle neutron scattering data suggested that both adsorption and degradation of BPA occurred in SPAC pores. The findings demonstrate that Mn(III) mediates oxidative transformation of dissolved and adsorbed BPA, the latter observation challenging the paradigm that contaminant desorption and diffusion out of pore structures are required steps for degradation. Soluble Mn(III) is abundant near oxic-anoxic interfaces, and the observation that adsorbed BPA is susceptible to degradation has implications for predicting, and possibly managing, the fate and longevity of BPA in environmental systems.


Assuntos
Compostos de Manganês , Manganês , Adsorção , Compostos Benzidrílicos , Oxirredução , Óxidos , Fenóis
13.
J Hazard Mater ; 417: 125987, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229371

RESUMO

Bisphenol A (BPA), a chemical of environmental concern, is recalcitrant under anoxic conditions, but is susceptible to oxidative degradation by manganese(IV)-oxide (MnO2). Microbial Mn(II)-oxidation generates MnO2-bio; however, BPA degradation in cultures of Mn(II)-oxidizing bacteria has not been explored. We assessed MnO2-bio-mediated BPA degradation using three Mn(II)-oxidizing bacteria, Roseobacter sp. AzwK-3b, Erythrobacter sp. SD-21, and Pseudomonas putida GB-1. In cultures of all three strains, enhanced BPA degradation was evident in the presence of Mn(II) compared to replicate incubations without Mn(II), suggesting MnO2-bio mediated BPA degradation. Increased Mn(II) concentrations up to 100 µM resulted in more MnO2-bio formation but the highest BPA degradation rates were observed with 10 µM Mn(II). Compared to abiotic BPA degradation with 10 µM synthetic MnO2, live cultures of strain GB-1 amended with 10 µM Mn(II) consumed 9-fold more BPA at about 5-fold higher rates. Growth of strain AzwK-3b was sensitive to BPA and the organism showed increased tolerance against BPA in the presence of Mn(II), suggesting MnO2-bio alleviated the inhibition by mediating BPA degradation. The findings demonstrate that Mn(II)-oxidizing bacteria contribute to BPA degradation but organism-specific differences exist, and for biologically-mediated-abiotic-degradation (BMAD), Mn-flux, rather than the absolute amount of MnO2-bio, is the key determinant for oxidation activity.


Assuntos
Compostos de Manganês , Manganês , Compostos Benzidrílicos , Manganês/toxicidade , Oxirredução , Óxidos , Fenóis
14.
Int Immunopharmacol ; 65: 159-173, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30316074

RESUMO

Gingivitis is evidenced by inflammation of the free gingiva, and still reversible. If left untreated, it may then progress to periodontitis. In the present study, the therapeutical effect of ketotifen fumarate on gingivitis was explored. Domestic cats with varying degrees of gingivitis naturally were enrolled in this study. Subgroups of animals were treated twice daily for one week with or without ketotifen fumarate (5 mg/kg). Effects of ketotifen fumarate were measured on gingival index, cells accumulation, mediators release, receptor-ligand interaction, oxidative stress, MAPK and NF-κB pathways, epithelial barrier and apoptosis. Ketotifen fumarate attenuated the initiation and progression of gingivitis, inhibited the infiltrations of mast cells, B lymphocytes, T lymphocytes, macrophages, neutrophils and eosinophils as well as the release of IgE, ß-hexosaminidase, tryptase, chymase, TNF-α, IL-4, and IL-13, influenced endothelial cells, fibroblasts and epithelial cells proliferation and apoptosis, and induced Th2 cells polarization, where ketotifen fumarate also might affect their interactions. Ketotifen fumarate reduced the oxidative stress, and inhibited NF-κB and p38 MAPK related with mast cells and macrophages accumulation. Ketotifen fumarate improved the aberrant expression of ZO-1 and inhibits the following apoptosis. On the other hand, these cells and mediators augmented functional attributes of them involving SCF/c-Kit, α4ß7/VCAM-1 and IL-8/IL-8RB interactions, thus creating a positive feedback loop to perpetuate gingivitis, where an inflammation microenvironment was modeled. Our results showed a previously unexplored therapeutic potential of ketotifen fumarate for gingivitis and further suggest that, in addition to biofilms, targeting inflammation microenvironment could be new strategy for the treatment of gingivitis/periodontitis.


Assuntos
Doenças do Gato/tratamento farmacológico , Gengivite/veterinária , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Cetotifeno/uso terapêutico , Animais , Linfócitos B/efeitos dos fármacos , Gatos , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gengivite/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA