Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 32(14): e1908072, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32077203

RESUMO

Advances in microelectronic system technology have necessitated the development and miniaturization of energy storage devices. Supercapacitors are an important complement to batteries in microelectronic systems; and further reduction of the size of micro-supercapacitors is challenging. Here, a novel strategy is demonstrated to break through the resolution limit of micro-supercapacitors by preparing nano-supercapacitors (NSCs) with interdigital nanosized electrodes using focused ion beam technology. The minimization of the size of the NSCs leads to a large increase in capacitance, with a high areal capacitance of 9.52 mF cm-2 and a volumetric capacitance of 18 700 F cm-3 , far superior to those of other reported works. Size reduction and the narrowing of the physical separation between nanoelectrodes are proved to be the most crucial factors in the enhancement of capacitive performances. New charge-storage mechanisms are discovered with a remarkable nonfaradaic double-layer capacitance that exists due to the considerable inner electric field force at the nanoscale. The developed strategy and the first set of data provided here shed light on the design and fabrication of flexible interdigitated NSCs that rival state-of-the-art supercapacitors in performance.

2.
ACS Nano ; 13(12): 14033-14040, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31725258

RESUMO

Hexagonal boron nitride (h-BN) is an important member of two-dimensional (2D) materials with a large direct bandgap, and has attracted growing interest in ultraviolet optoelectronics and nanoelectronics. Compared with graphene and graphite, h-BN has weak Raman effect because of the far off-resonance excitation; hence, it is difficult to exploit Raman spectroscopy to characterize important properties of 2D h-BN, such as thickness, doping, and strain effects. Here, we applied stimulated Raman scattering (SRS) to enhance the sensitivity of the E2g Raman mode of h-BN. We showed that SRS microscopy achieves rapid high resolution imaging of h-BN with a pixel dwell time 4 orders of magnitude smaller than conventional spontaneous Raman microscopy. Moreover, the near-perfect linear dependence of signal intensity on h-BN thickness and isotropic polarization dependence allow convenient determination of the flake thickness with SRS imaging. Our results indicated that SRS microscopy provides a promising tool for high-speed quantification of h-BN and holds the potential for vibrational imaging of 2D materials.

3.
ACS Appl Mater Interfaces ; 11(28): 25108-25114, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268649

RESUMO

The booming frontier of electrochemistry is radically transforming the landscape of global chemical and energy industry. Most recent advancements in electrocatalysts have been built on trial and error, lacking model experiments to illuminate the fundamental factors hidden behind, such as phase, conductivity, and surface coordination environment. Here, we use phase-controllable, highly oriented two-dimensional MoTe2 as the model catalysts. The 2H phase MoTe2's conductivity can be engineered both extrinsically and intrinsically by single-layer graphene and lithiation, bringing down the sheet resistance from 0.95 MΩ/□ to 0.8 kΩ/□ and 0.6 kΩ/□. The corresponding electrocatalytic performance was unlocked from a silent state, catching up to its 1T' counterpart, with a parallel Tafel slope of 141 mV/dec. A focused ion beam further exposed the edge atoms, which exhibited a hydrogen evolution turnover frequency 104 times superior to that of basal plane atoms.

4.
Nanotechnology ; 30(17): 174002, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30641493

RESUMO

Chemical vapor deposition synthesis of semiconducting transition metal dichalcogenides (TMDs) offers a new route to build next-generation semiconductor devices. But realization of continuous and uniform multilayer (ML) TMD films is still limited by their specific growth kinetics, such as the competition between surface and interfacial energy. In this work, a layer-by-layer vacuum stacking transfer method is applied to obtain uniform and non-destructive ML-MoS2 films. Back-gated field effect transistor (FET) arrays of 1L- and 2L-MoS2 are fabricated on the same wafer, and their electrical performances are compared. We observe a significant increase of field-effect mobility for 2L-MoS2 FETs, up to 32.5 cm2 V-1 s-1, which is seven times higher than that of 1L-MoS2 (4.5 cm2 V-1 s-1). Then we also fabricated 1L-, 2L-, 3L-, and 4L-MoS2 FETs to further investigate the thickness-dependent characteristics of transferred ML-MoS2. Measurement results show a higher mobility but a smaller current on/off ratio as the layer number increases, suggesting that a balance between mobility and current on/off ratio can be achieved in 2L- and 3L-MoS2 FETs. Dual-gated structure is also investigated to demonstrate an improved electrostatic control of the ML-MoS2 channel.

5.
Sci Rep ; 7: 45584, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28367992

RESUMO

Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN's hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one's.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA