Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Lab Chip ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818738

RESUMO

As a model organism for space biology experiments, Caenorhabditis elegans (C. elegans) has low demand for life support and strong resistance to unfavorable environments, making experimentation with C. elegans relatively easy and cost-effective. Previously, C. elegans has been flown in several spaceflight investigations, but there is still an urgent need for analytical platforms enabling on-orbit automated monitoring of multiple phenotypes of worms, such as growth and development, movement, changes of biomarkers, etc. To solve this problem, we presented a fully integrated microfluidic system (WormSpace µ-TAS) with an arrayed microfluidic chip (WormChip-4.8.1) and a replaceable microfluidic module (WormChip cartridge), which was compatible with the experimental facility on the China Space Station (CSS). By adopting technologies of programmed fluid control based on liquid medium CeMM as well as multi-function imaging with a camera mounted on a three-dimensional (3D) transportation stage, automated and long-term experimentation can be performed for on-chip multi-strain culturing and bright-field and fluorescence imaging of C. elegans at the single-worm level. The presented WormSpace µ-TAS enabled its successful application on the CSS, achieving flight launch of the sample unit (WormChip cartridge) at low temperature (controlled by a passive thermal case at 12 °C), automated 30-day cultivation of 4 strains of C. elegans, on-orbit monitoring of multiple phenotypes (growth and development, movement, and changes of fluorescent protein expression) at the single worm-level, on-chip fixation of animals at the end of the experiment and returning the fixed samples to earth. In summary, this study presented a verified microfluidic system and experimental protocols for automated on-chip multi-strain culturing and multi-function imaging of C. elegans at the single-worm level on the CSS. The WormSpace µ-TAS will provide a novel experimental platform for the study of biological effects of space radiation and microgravity, and for the development of protective drugs.

2.
Vaccines (Basel) ; 12(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793805

RESUMO

Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.

3.
NPJ Microgravity ; 10(1): 45, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575629

RESUMO

Transcriptome profiles are sensitive to space stressors and serve as valuable indicators of the biological effects during spaceflight. Herein, we transformed the expression profiles into gene interaction patterns by single-sample networks (SSNs) and performed the integrated analysis on the 301 spaceflight and 290 ground control samples, which were obtained from the GeneLab platform. Specifically, an individual SSN was established for each sample. Based on the topological structures of 591 SSNs, the differentially interacted genes (DIGs) were identified between spaceflights and ground controls. The results showed that spaceflight disrupted the gene interaction patterns in mice and resulted in significant enrichment of biological processes such as protein/amino acid metabolism and nucleic acid (DNA/RNA) metabolism (P-value < 0.05). We observed that the mice exposed to radiation doses within the three intervals (4.66-7.14, 7.592-8.295, 8.49-22.099 mGy) exhibited similar gene interaction patterns. Low and medium doses resulted in changes to the circadian rhythm, while the damaging effects on genetic material became more pronounced in higher doses. The gene interaction patterns in response to space stressors varied among different tissues, with the spleen, lung, and skin being the most responsive to space radiation (P-value < 0.01). The changes observed in gene networks during spaceflight conditions might contribute to the development of various diseases, such as mental disorders, depression, and metabolic disorders, among others. Additionally, organisms activated specific gene networks in response to virus reactivation. We identified several hub genes that were associated with circadian rhythms, suggesting that spaceflight could lead to substantial circadian rhythm dysregulation.

4.
Int J Radiat Biol ; 100(5): 777-790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471034

RESUMO

PURPOSE: To identify sensitive genes for space radiation, we integrated the transcriptomic samples of spaceflight mice from GeneLab and predicted the radiation doses absorbed by individuals in space. METHODS AND MATERIALS: A single-sample network (SSN) for each individual sample was constructed. Then, using machine learning and genetic algorithms, we built the regression models to predict the absorbed dose equivalent based on the topological structure of SSNs. Moreover, we analyzed the SSNs from each tissue and compared the similarities and differences among them. RESULTS: Our model exhibited excellent performance with the following metrics: R2=0.980, MSE=6.74e-04, and the Pearson correlation coefficient of 0.990 (p value <.0001) between predicted and actual values. We identified 20 key genes, the majority of which had been proven to be associated with radiation. However, we uniquely established them as space radiation sensitive genes for the first time. Through further analysis of the SSNs, we discovered that the different tissues exhibited distinct mechanisms in response to space stressors. CONCLUSIONS: The topology structures of SSNs effectively predicted radiation doses under spaceflight conditions, and the SSNs revealed the gene regulatory patterns within the organisms under space stressors.


Assuntos
Radiação Cósmica , Voo Espacial , Animais , Camundongos , Radiação Cósmica/efeitos adversos , Doses de Radiação , Relação Dose-Resposta à Radiação , Aprendizado de Máquina , Redes Reguladoras de Genes/efeitos da radiação , Transcriptoma/efeitos da radiação
5.
Chemosphere ; 351: 141148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211791

RESUMO

During space exploration, space radiation is widely recognized as an inescapable perilous stressor, owing to its capacity to induce genomic DNA damage and escalate the likelihood of detrimental health outcomes. Rapid and reliable estimation of space radiation dose holds paramount significance in accurately assessing the health risks associated with spaceflight. However, the identification of space radiation-responsive genes, with their potential to serve as early indicators for diagnosing radiation dose associated with spaceflight, continues to pose a significant challenge. In this study, based on the evolutionarily conserved mechanism of radiation response, an in silico analysis method of homologous comparison was performed to identify the Caenorhabditis elegans orthologues of human radiation-responsive genes with possible roles in the major processes of response to radiation, and thereby to explore the potential C. elegans radiation-responsive genes for evaluating the levels of space radiation exposure. The results showed that there were 60 known C. elegans radiation-responsive genes and 211 C. elegans orthologues of human radiation-responsive genes implicated in the major processes of response to radiation. Through an investigation of all available transcriptomic datasets obtained from space-flown C. elegans, it was observed that the expression levels of the majority of these putative C. elegans radiation-responsive genes identified in this study were notably changed across various spaceflight conditions. Furthermore, this study indicated that within the identified genes, 19 known C. elegans radiation-responsive genes and 40 newly identified C. elegans orthologues of human radiation-responsive genes exhibited a remarkable positive correlation with the duration of spaceflight. Moreover, a noteworthy presence of substantial multi-collinearity among the majority of these identified genes was observed. This observation lends support to the possibility of treating each identified gene as an independent indicator of radiation dose in space. Ultimately, a subset of 15 potential radiation-responsive genes was identified, presenting the most promising indicators for estimation of radiation dose associated with spaceflight in C. elegans.


Assuntos
Caenorhabditis elegans , Voo Espacial , Animais , Humanos , Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Dano ao DNA , Doses de Radiação
6.
Heliyon ; 9(4): e15074, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123900

RESUMO

Different concentrations of calcium titanate (CaTiO3) nanoparticles were loaded into the Silk fibroin (SF) solution to construct porous SF@CaTiO3 hybrid scaffolds, which were shown to have enhanced properties for stimulating peripheral nerve regeneration. Surface charges, crystallization intensity, wettability, porosity, and morphology were measured and analyzed. We analyzed the hybrid porous SF@CaTiO3 scaffolds that affected the expansion of Schwann cells. The results demonstrated a concentration-dependent influence on the dispersion of nanoparticles in the CaTiO3 hybridized SF scaffolds. Incorporating CaTiO3-NPs into the porous SF@CaTiO3 hybrid scaffolds can boost hydrophobicity while decreasing surface charge density and porosity. The hybridized scaffolds mostly had an orthorhombic calcium titanate crystal structure with amorphous Silk fibroin mixed. Schwann cell cultures revealed that SF@CaTiO3 hybrid scaffolds containing an optimal CaTiO3-NPs concentration could stimulate the proliferation, attachment, and protection of Schwann cell biological functions, suggesting the scaffolds' potential for use in peripheral nerve regeneration.

7.
Ecotoxicol Environ Saf ; 259: 115038, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229870

RESUMO

There has been some controversy over the use of radiobiological models when modeling the dose-response curves of ionizing radiation (IR)-induced chromosome aberration and tumor prevalence, as those curves usually show obvious non-targeted effects (NTEs) at low doses of high linear energy transfer (LET) radiation. The lack of understanding the contribution of NTEs to IR-induced carcinogenesis can lead to distinct deviations of relative biological effectiveness (RBE) estimations of carcinogenic potential, which are widely used in radiation risk assessment and radiation protection. In this work, based on the initial pattern of two classes of IR-induced DNA double-strand breaks (DSBs) clustering in chromatin domains and the subsequent incorrect repair processes, we proposed a novel radiobiological model to describe the dose-response curves of two carcinogenic-related endpoints within the same theoretical framework. The representative experimental data was used to verify the consistency and validity of the present model. The fitting results indicated that, compared with targeted effect (TE) and NTE models, the current model has better fitting ability when dealing with the experimental data of chromosome aberration and tumor prevalence induced by multiple types of IR with different LETs. Notably, the present model without introducing an NTE term was adequate to describe the dose-response curves of IR-induced chromosome aberration and tumor prevalence with NTEs in low-dose regions. Based on the fitting parameters, the LET-dependent RBE values were calculated for three given low doses. Our results showed that the RBE values predicted by the current model gradually decrease with the increase of doses for the endpoints of chromosome aberration and tumor prevalence. In addition, the calculated RBE was also compared with those evaluated from other models. These analyses show that the proposed model can be used as an alternative tool to well describe dose-response curves of multiple carcinogenic-related endpoints and effectively estimate RBE in low-dose regions.


Assuntos
Quebras de DNA de Cadeia Dupla , Neoplasias , Humanos , Cromatina , Prevalência , Transferência Linear de Energia , Radiação Ionizante , Aberrações Cromossômicas , DNA/efeitos da radiação , Análise por Conglomerados , Relação Dose-Resposta à Radiação
9.
BMC Genomics ; 24(1): 76, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797662

RESUMO

Since genes do not function individually, the gene module is considered an important tool for interpreting gene expression profiles. In order to consider both functional similarity and expression similarity in module identification, GMIGAGO, a functional Gene Module Identification algorithm based on Genetic Algorithm and Gene Ontology, was proposed in this work. GMIGAGO is an overlapping gene module identification algorithm, which mainly includes two stages: In the first stage (initial identification of gene modules), Improved Partitioning Around Medoids Based on Genetic Algorithm (PAM-GA) is used for the initial clustering on gene expression profiling, and traditional gene co-expression modules can be obtained. Only similarity of expression levels is considered at this stage. In the second stage (optimization of functional similarity within gene modules), Genetic Algorithm for Functional Similarity Optimization (FSO-GA) is used to optimize gene modules based on gene ontology, and functional similarity within gene modules can be improved. Without loss of generality, we compared GMIGAGO with state-of-the-art gene module identification methods on six gene expression datasets, and GMIGAGO identified the gene modules with the highest functional similarity (much higher than state-of-the-art algorithms). GMIGAGO was applied in BRCA, THCA, HNSC, COVID-19, Stem, and Radiation datasets, and it identified some interesting modules which performed important biological functions. The hub genes in these modules could be used as potential targets for diseases or radiation protection. In summary, GMIGAGO has excellent performance in mining molecular mechanisms, and it can also identify potential biomarkers for individual precision therapy.


Assuntos
COVID-19 , Redes Reguladoras de Genes , Humanos , Ontologia Genética , Algoritmos , Perfilação da Expressão Gênica/métodos , Transcriptoma
10.
Ecotoxicol Environ Saf ; 252: 114595, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753968

RESUMO

2,3,7,8-tet-rachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are two typical persistent organic pollutants (POPs), both of which accumulate in the liver and have potential carcinogenic hepatic effects. The underlying molecular mechanisms of pathogenesis of hepatocellular carcinoma (HCC) remain elusive when exposure to POPs. The aim of this study is to explore the key genes involved in HCC when exposure to TCDD and α-endosulfan by weighted gene co-expression network analysis (WGCNA). First, we performed co-expressed analysis on HCC and normal condition, based on WGCNA. In results, seven co-expressed modules were identified from 56 human liver samples, and the brown module correlated with five stages of HCC. Subsequently, we predicted that human five liver diseases were associated with exposure to TCDD and/or α-endosulfan by Nextbio analysis. Functional enrichment analysis showed that the brown module enriched in oxidation-reduction process, DNA replication, oxidoreductase activity and aging, which were the same as the results when exposure to the mixture of TCDD and α-endosulfan. Lastly, based on the protein-protein interaction network, we identified three novel genes including HK2, EXO1 and PFKP as key genes in HCC associated with exposure to TCDD and α-endosulfan mixture. In addition, survival analysis of key genes in Kaplan-Meier plotter demonstrated that aberrant expression levels of all the three key genes were associated with poor prognosis of HCC. Finally, Western blot analysis confirmed that protein expression levels of PFKP and HK2 in the three exposed groups were significantly elevated, while EXO1 were significantly upregulated when exposure to TCDD and α-endosulfan mixture in HepaRG cells. This study provides a new perspective to the understanding of the genetic mechanism of HCC when exposure to POPs.


Assuntos
Carcinoma Hepatocelular , Poluentes Ambientais , Neoplasias Hepáticas , Dibenzodioxinas Policloradas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Endossulfano , Dibenzodioxinas Policloradas/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Perfilação da Expressão Gênica/métodos , Poluentes Ambientais/toxicidade
11.
Toxicology ; 484: 153392, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36513242

RESUMO

Endosulfan, a typical organochlorine pesticide, is widely used in agricultural countries and was detected in blood samples from the general population. Studies have shown a positive correlation between chronic kidney disease of unknown aetiology (CKDu) and endosulfan. CKDu has become endemic in agricultural countries, with clinical manifestations of tubulointerstitial fibrosis.The goal of this study was to investigate the effects of endosulfan in kidney cell injury in human renal tubular epithelial cells (HK-2), focusing on apoptosis, inflammatory response, and epithelial-mesenchymal transition (EMT). We found that endosulfan induced apoptosis in HK-2 cells by up-regulating the expression of BAX, APAF-1, Caspase-3 and mitochondrial Cytochrome c was released into the cytosol. Endosulfan caused an inflammatory response, showing the increase in the secretion and mRNA expression levels of IL-6/IL-8. Endosulfan triggered EMT, characterized by downregulation of E-cadherin and upregulation of Vimentin. Western blot results showed that p-Smad3 and Smad3 protein expression were elevated while the expression of Smad7 were decreased in endosulfan-exposed groups. Dual luciferase reporter assay confirmed the potential binding capacity of miR-429 to 3'-UTR of ACE2. Endosulfan causes upregulation of miR-429 and downregulation of ACE2 in HK-2 cells. Overexpression of miR-429 or silencing of ACE2 in HK-2 cells caused apoptosis, inflammation and EMT through TGF signaling pathway. These findings suggest that endosulfan can lead to kidney cell injury by modulating ACE2 through up-regulating miR-429, providing new evidence for the pathogenesis of CKDu.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Endossulfano/toxicidade , Endossulfano/metabolismo , Rim/patologia , Células Epiteliais , Transição Epitelial-Mesenquimal
12.
J Environ Sci (China) ; 127: 688-699, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522097

RESUMO

3-Methylindole (skatole) is regarded as one of the most offensive compounds in odor emission. Biodegradation is feasible for skatole removal but the functional species and genes responsible for skatole degradation remain enigmatic. In this study, an efficient aerobic skatole-degrading consortium was obtained. Rhodococcus and Pseudomonas were identified as the two major and active populations by integrated metagenomic and metatranscriptomic analyses. Bioinformatic analyses indicated that the skatole downstream degradation was mainly via the catechol pathway, and upstream degradation was likely catalyzed by the aromatic ring-hydroxylating oxygenase and flavin monooxygenase. Genome binning and gene analyses indicated that Pseudomonas, Pseudoclavibacter, and Raineyella should cooperate with Rhodococcus for the skatole degradation process. Moreover, a pure strain Rhodococcus sp. DMU1 was successfully obtained which could utilize skatole as the sole carbon source. Complete genome sequencing showed that strain DMU1 was the predominant population in the consortium. Further crude enzyme and RT-qPCR assays indicated that strain DMU1 degraded skatole through the catechol ortho-cleavage pathway. Collectively, our results suggested that synergistic degradation of skatole in the consortium should be performed by diverse bacteria with Rhodococcus as the primary degrader, and the degradation mainly proceeded via the catechol pathway.


Assuntos
Rhodococcus , Escatol , Escatol/metabolismo , Biodegradação Ambiental , Rhodococcus/genética , Rhodococcus/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Pseudomonas/metabolismo , Catecóis/metabolismo
13.
Environ Res ; 216(Pt 3): 114711, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334824

RESUMO

Anthropogenic discharge activities have increased nutrient pollution in coastal areas, leading to algal blooms and microbial community changes. Particularly, microbial communities could easily be affected with variation in nutrient pollution, and thus offered a promising strategy to predict early red tides warning via microbial community-levels variation and their keystone taxa hysteretic responses to nutrient pollution. Herein high-throughput sequencing technology from 52 samples were used to explore the variation of microbial communities and find the significant tipping points with aggravating nutrient conditions in Xiaoping Island coastal area. Results indicated that bacterial and microeukaryote communities were generally spatial and seasonal heterogeneity and were influenced by the different nutrient conditions. Procrustes test results showed that the comprehensive index of organics polluting (OPI), total nitrogen (TN), inorganic nitrogen (DIN), and total phosphorus (TP) were significantly correlated with the composition of bacteria and microeukaryotes. A SEGMENTED analysis revealed that the threshold of TN, DIN, and NH4-N for bacterial community were 0.23 ± 0.091 mg/L, 0.21 ± 0.084 mg/L, 0.09 ± 0.057 mg/L, respectively. Tipping points for TN, DIN, and NH4-N agreed with the concentration during Ceratium tripos and Skeletonema costatum blooms. Co-occurrence network results found that Planktomarina, Acinetobacter, and Verrucomicrobiaceae were keystone and OPI-discriminatory taxa. The abundant changes of Planktomarina at station A1 were significantly correlated with the development of C. tripos blooms (r = 0.55, p < 0.05), and also significantly correlated with TN, DIN, and NO3-N (r≥|0.55|, p < 0.05). The abundant changes of Acinetobacter and Verrucomicrobiaceae at station C1 were significantly correlated with the development of C. tripos blooms (r ≥ 0.77, p < 0.05), and also significantly correlated with PO4-P (r ≥ 0.64, p < 0.05). The dynamic abundance of keystone taxa showed that the trend of rapid changes could be monitored 1.5 months before the occurrence of red tide. Therefore, this study provides an assessment method for early warning of red tide occurrence and factors that trigger red tide.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Fósforo/análise , Nitrogênio/análise , Bactérias/genética , China
14.
Front Plant Sci ; 13: 900143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800606

RESUMO

Spaceflight is a special abiotic stress, the biological effect mechanism of which on contemporary rice has been clarified, However, its effect on offspring rice was still unclear. In order to understand the response mechanism of F2 generation plants to space flight, this study used SJ-10 recoverable satellite to carry DN423 rice seeds for 12.5 days in orbit flight. After returning to the ground, the plants were then planted to F2 generation to explore the biological effect mechanism. Our research showed that in the F2 generation of TLS, the rice plant height of the space flight group increased by 33.8%, the ear length and thousand-grain weight decreased by 9.7 and 4.6%, respectively, and the grain number per panicle increased by 6.5%. Moreover, related proteins that control changes in agronomic traits have been identified. The changes of MDA, H2O2, soluble sugar, electron leakage and antioxidant enzyme activity confirmed the stress response in F2 generation plants. ITRAQ and LC-MS technology were used to reveal the change pattern of protein levels and metabolite levels in F2 generation plants, 389 and 405 proteins were identified as differentially abundant proteins in TLS and TS, respectively. In addition, there were 124 and 125 metabolites that changed during these two periods. The proteome and metabolome result further confirmed that the F2 generation plants still retained the memory of space flight stress, and retained the memory of space flight stress through genome instability. Oxidative stress signals activated sugar signals to rebuild metabolic networks to adapt to space flight stress. The reconstruction of energy metabolism, amino acid metabolism, phenylalanine metabolism, and flavonoid metabolism played an important role in the process of adapting to space flight stress. The results of this study broaden the perspective of space biological effects and provide a basis for studying the effects of abiotic stress on plant progeny.

15.
Sci Total Environ ; 845: 157252, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817112

RESUMO

Endosulfan belongs to persistent organic pollutants (POPs), closely related to an increased risk of prostate cancer (PCa). The existing evidence shows that lncRNAs compete with miRNAs for binding sites and contribute to the onset and progression of human malignancies. In this study we investigate how endosulfan promotes cell migration and invasion in DU145 and PC3 prostate cancer cells through epigenetic mechanism of lncRNA-miRNA regulation. Based on our past research we focused on PTP4A3 and constructed wild-type (WT) and mutant PTP4A3 plasmids for further analysis. Our results revealed that transfection of PTP4A3-WT can lead to changes in the expression of epithelial-mesenchymal transition (EMT) biomarkers and critical proteins in the TGF-ß signaling pathway, and promote cell migration and invasion in PCa cells. Bioinformatics analysis shows that there were complementary sequences in PTP4A3 3'-UTR and KCNQ1OT1 3'-UTR to the seed sequence of hsa-miR-137-3p, and dual luciferase reporter assay indicates the potential binding capacity of miR-137-3p to 3'-UTR of PTP4A3 and KCNQ1OT1. We found that miR-137-3p mimic inhibited cell migration and invasion, as well as repressed alterations of EMT biomarkers and critical proteins in the TGF-ß signaling pathway. Rescue experiment results revealed that co-transfection of miR-137-3p mimic and PTP4A3-WT plasmid reversed these changes following transfection with miR-137-3p mimic alone. We found that KCNQ1OT1 was predominantly distributed in the cytoplasm from a subcellular fractionation assay. Functionally, silencing of KCNQ1OT1 repressed cell migration and invasion, and caused alterations of EMT biomarkers and critical proteins in the TGF-ß signaling pathway, which were all restored by co-transfection with anti-miR-137-3p or PTP4A3-WT plasmid. Furthermore, overexpression of miR-137-3p or silencing of KCNQ1OT1 dramatically rescued the effects of endosulfan on promoting cell migration and invasion. These findings suggest that endosulfan can indeed promote cell migration and invasion via the KCNQ1OT1/miR-137-3p/PTP4A3 axis in PCa cells.


Assuntos
MicroRNAs , Neoplasias da Próstata , Proteínas Tirosina Fosfatases , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Endossulfano/toxicidade , Humanos , Masculino , MicroRNAs/genética , Proteínas de Neoplasias/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Proteínas Tirosina Fosfatases/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo
16.
Emerg Microbes Infect ; 11(1): 1474-1487, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35570580

RESUMO

Rabies virus has existed for thousands of years and is circulating in many species. In the present study, a total of 2896 rabies viruses isolated worldwide were phylogenetically classified into ten clusters based on the G gene sequence, and these clusters showed a close relationship with the hosts and regions that they were isolated from. Eighty-three representative G sequences were selected from ten clusters and were used to construct pseudoviruses using the VSV vector. The phylogenetic relationships, infectivity and antigenicity of the representative 83 pseudotyped rabies viruses were comprehensively analyzed. Eighty three pseudoviruses were divided into four antigentic clusters (GAgV), of which GAgV4 showed poor neutralization to all immunized sera. Further analysis showed that almost all strains in the GAgV4 were isolated from wild animals in the America, especially bats and skunks. No significant relationship in terms of phylogeny, infectivity and antigenicity was proved. Amino acid mutations at residues 231and 436 can affect the infectivity, while mutations at residues 113, 164 and 254 may affect the sensitivity to immunized animal sera, especially residue 254. We recommend close monitoring of infectivity and antigenicity, which should be more precise than simple genetic analysis.


Assuntos
Quirópteros , Vírus da Raiva , Animais , Animais Selvagens , Filogenia
17.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328810

RESUMO

The stress response of plants to spaceflight has been confirmed in contemporary plants, and plants retained the memory of spaceflight through methylation reaction. However, how the progeny plants adapt to this cross-generational stress memory was rarely reported. Here, we used the ShiJian-10 retractable satellite carrying Dongnong416 rice seeds for a 12.5-day on-orbit flight and planted the F2 generation after returning to the ground. We evaluated the agronomic traits of the F2 generation plants and found that the F2 generation plants had no significant differences in plant height and number of tillers. Next, the redox state in F2 plants was evaluated, and it was found that the spaceflight broke the redox state of the F2 generation rice. In order to further illustrate the stress response caused by this redox state imbalance, we conducted proteomics and metabolomics analysis. Proteomics results showed that the redox process in F2 rice interacts with signal transduction, stress response, and other pathways, causing genome instability in the plant, leading to transcription, post-transcriptional modification, protein synthesis, protein modification, and degradation processes were suppressed. The metabolomics results showed that the metabolism of the F2 generation plants was reshaped. These metabolic pathways mainly included amino acid metabolism, sugar metabolism, cofactor and vitamin metabolism, purine metabolism, phenylpropane biosynthesis, and flavonoid metabolism. These metabolic pathways constituted a new metabolic network. This study confirmed that spaceflight affected the metabolic changes in offspring rice, which would help better understand the adaptation mechanism of plants to the space environment.


Assuntos
Oryza , Voo Espacial , Metabolômica , Oryza/genética , Oryza/metabolismo , Proteômica , Sementes
18.
Emerg Microbes Infect ; 11(1): 18-29, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34818119

RESUMO

Severe acute respiratory syndrome coronavirus 2 variants have continued to emerge in diverse geographic locations with a temporal distribution. The Lambda variant containing multiple mutations in the spike protein, has thus far appeared mainly in South America. The variant harbours two mutations in the receptor binding domain, L452Q and F490S, which may change its infectivity and antigenicity to neutralizing antibodies. In this study, we constructed 10 pseudoviruses to study the Lambda variant and each individual amino acid mutation's effect on viral function, and used eight cell lines to study variant infectivity. In total, 12 monoclonal antibodies, 14 convalescent sera, and 23 immunized sera induced by mRNA vaccines, inactivated vaccine, and adenovirus type 5 vector vaccine were used to study the antigenicity of the Lambda variant. We found that compared with the D614G reference strain, Lambda demonstrated enhanced infectivity of Calu-3 and LLC-MK2 cells by 3.3-fold and 1.6-fold, respectively. Notably, the sensitivity of the Lambda variant to 5 of 12 neutralizing monoclonal antibodies, 9G11, AM180, R126, X593, and AbG3, was substantially diminished. Furthermore, convalescent- and vaccine-immunized sera showed on average 1.3-2.5-fold lower neutralizing titres against the Lambda variant. Single mutation analysis revealed that this reduction in neutralization was caused by L452Q and F490S mutations. Collectively, the reduced neutralization ability of the Lambda variant suggests that the efficacy of monoclonal antibodies and vaccines may be compromised during the current pandemic.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Sítios de Ligação , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Soros Imunes , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Relação Estrutura-Atividade , Pseudotipagem Viral
19.
Artigo em Inglês | MEDLINE | ID: mdl-34948773

RESUMO

Motion sickness is a common central nervous system response, the primary sign of which is vomiting. Its susceptibility varies between individuals. To find predictive factors, we investigated the association of ADRA2A rs1800544 and HTR3B rs3758987 with motion sickness susceptibility and examined their mRNA changes during actual voyages. A total of 315 healthy college students were enrolled for SNP genotyping by the PCR-RFLP method. Blood samples were collected from another 42 subjects during two separate voyages to detect their mRNA expression changes at three time points. The frequency of the rs1800544 GG genotype in the susceptibility group was significantly higher (52.26%), and allele G increased the risk of motion sickness (OR = 1.585, 95% CI = 1.136-2.208). In the logistic regression model, the rs3758987 CC+TC genotype and rs1800544 GG genotype increased the risk of motion sickness-induced vomiting (OR = 2.105, 95% CI = 1.112-3.984; OR = 1.992, 95% CI = 1.114-3.571). The ADRA2A mRNA baseline was lower in the GG carriers and the HTR3B mRNA baseline was lower in the TC/CC carriers before sailing, then increased significantly within 24 h and then decreased after a long-term voyage. People carrying the rs1800544 GG genotype seem more susceptible to motion sickness. In combination with the incidence of vomiting during the actual-voyage experiments, our results indicate the involvement of rs1800544 and rs3758987 in motion sickness-induced vomiting.


Assuntos
Enjoo devido ao Movimento , Polimorfismo de Nucleotídeo Único , Receptores 5-HT3 de Serotonina , Predisposição Genética para Doença , Genótipo , Heterozigoto , Humanos , Enjoo devido ao Movimento/genética , Receptores Adrenérgicos alfa 2
20.
Ecotoxicol Environ Saf ; 228: 113040, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34856488

RESUMO

Endosulfan is an organochlorine pesticide, which poses a potential danger to human health and safety. It is known that dysfunction of glomerular mesangial cells causes glomerular sclerosis, associated with chronic kidney diseases. In the present study, we investigated the effects of endosulfan on cell proliferation and extracellular matrix accumulation (ECM) in human renal mesangial cells (HRMCs). Cells were treated with endosulfan, endosulfan (10 µM) plus specific inhibitor of TGF-ß signaling (LY2109761) or antioxidant (NAC). The results showed that endosulfan significantly promoted cell proliferation, accompanied with the decrease of p27 mRNA expression and the increase in the mRNA expression levels of p21 and inflammatory factors IL-6/IL-8. qRT-PCR results showed that matrix metalloproteinase-2 (MMP2) and tissue metalloproteinase-3 (TIMP3) were down-regulated whereas laminin was up-regulated when exposure to endosulfan. Western blot results showed that p-Smad2/3 was up-regulated, while Smad7 was down-regulated when exposure to endosulfan, which were reversed in the presence of LY2109761. Endosulfan significantly decreased the activity of SOD and increased the MDA level and CAT activity, which were reversed in the presence of NAC. These findings suggest that endosulfan can cause excessive proliferation and massive accumulation of ECM through TGF-ß/Smad signaling pathway, and also induced oxidative stress and inflammation in HRMCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA