Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Patterns (N Y) ; 4(8): 100775, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602221

RESUMO

During dynamic social interaction, inferring and predicting others' behaviors through theory of mind (ToM) is crucial for obtaining benefits in cooperative and competitive tasks. Current multi-agent reinforcement learning (MARL) methods primarily rely on agent observations to select behaviors, but they lack inspiration from ToM, which limits performance. In this article, we propose a multi-agent ToM decision-making (MAToM-DM) model, which consists of a MAToM spiking neural network (MAToM-SNN) module and a decision-making module. We design two brain-inspired ToM modules (Self-MAToM and Other-MAToM) to predict others' behaviors based on self-experience and observations of others, respectively. Each agent can adjust its behavior according to the predicted actions of others. The effectiveness of the proposed model has been demonstrated through experiments conducted in cooperative and competitive tasks. The results indicate that integrating the ToM mechanism can enhance cooperation and competition efficiency and lead to higher rewards compared with traditional MARL models.

2.
Patterns (N Y) ; 4(8): 100789, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602224

RESUMO

Spiking neural networks (SNNs) serve as a promising computational framework for integrating insights from the brain into artificial intelligence (AI). Existing software infrastructures based on SNNs exclusively support brain simulation or brain-inspired AI, but not both simultaneously. To decode the nature of biological intelligence and create AI, we present the brain-inspired cognitive intelligence engine (BrainCog). This SNN-based platform provides essential infrastructure support for developing brain-inspired AI and brain simulation. BrainCog integrates different biological neurons, encoding strategies, learning rules, brain areas, and hardware-software co-design as essential components. Leveraging these user-friendly components, BrainCog incorporates various cognitive functions, including perception and learning, decision-making, knowledge representation and reasoning, motor control, social cognition, and brain structure and function simulations across multiple scales. BORN is an AI engine developed by BrainCog, showcasing seamless integration of BrainCog's components and cognitive functions to build advanced AI models and applications.

3.
Front Neurosci ; 16: 953368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090282

RESUMO

Brain-inspired spiking neural networks (SNNs) are successfully applied to many pattern recognition domains. The SNNs-based deep structure has achieved considerable results in perceptual tasks, such as image classification and target detection. However, applying deep SNNs in reinforcement learning (RL) tasks is still a problem to be explored. Although there have been previous studies on the combination of SNNs and RL, most focus on robotic control problems with shallow networks or using the ANN-SNN conversion method to implement spiking deep Q networks (SDQN). In this study, we mathematically analyzed the problem of the disappearance of spiking signal features in SDQN and proposed a potential-based layer normalization (pbLN) method to train spiking deep Q networks directly. Experiment shows that compared with state-of-art ANN-SNN conversion method and other SDQN works, the proposed pbLN spiking deep Q networks (PL-SDQN) achieved better performance on Atari game tasks.

4.
iScience ; 24(8): 102880, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401664

RESUMO

Despite advances in artificial intelligence models, neural networks still cannot achieve human performance, partly due to differences in how information is encoded and processed compared with human brain. Information in an artificial neural network (ANN) is represented using a statistical method and processed as a fitting function, enabling handling of structural patterns in image, text, and speech processing. However, substantial changes to the statistical characteristics of the data, for example, reversing the background of an image, dramatically reduce the performance. Here, we propose a quantum superposition spiking neural network (QS-SNN) inspired by quantum mechanisms and phenomena in the brain, which can handle reversal of image background color. The QS-SNN incorporates quantum theory with brain-inspired spiking neural network models from a computational perspective, resulting in more robust performance compared with traditional ANN models, especially when processing noisy inputs. The results presented here will inform future efforts to develop brain-inspired artificial intelligence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA