Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(14): 13851-13860, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440182

RESUMO

Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min-1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe-N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe-N5 sites with exceptional Fenton activity (k = 0.158 min-1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.

2.
Microb Pathog ; 176: 106001, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682670

RESUMO

The zoonotic pathogen avian influenza A H5N8 causes enormous economic losses in the poultry industry and poses a serious threat to the public health. Here, we report the first systematic review and meta-analysis of the worldwide prevalence of birds. We filtered 45 eligible articles from seven databases. A random-effects model was used to analyze the prevalence of H5N8 in birds. The pooled prevalence of H5N8 in birds was 1.6%. In the regions, Africa has the highest prevalence (8.0%). Based on the source, village (8.3%) was the highest. In the sample type, the highest prevalence was organs (79.7%). In seasons, the highest prevalence was autumn (28.1%). The largest prevalence in the sampling time was during 2019 or later (7.0%). Furthermore, geographical factors also were associated with the prevalence. Therefore, we recommend site-specific prevention and control tools for this strain in birds and enhance the surveillance to reduce the spread of H5N8.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Aviária/epidemiologia , Animais Selvagens , Prevalência , Aves , Influenza Humana/epidemiologia , Filogenia , Surtos de Doenças/veterinária
3.
ACS Appl Mater Interfaces ; 14(43): 49352-49361, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260496

RESUMO

Superhydrophobic surfaces have been widely studied due to their potential applications in aerospace fields. However, superhydrophobic surfaces with excellent water-repellent, anti-icing, and icephobic performances at low temperatures have rarely been reported. Herein, superhydrophobic surfaces with heating capability were prepared by etching square micropillar arrays on the surface of multiwalled carbon nanotube (MWCNT)/poly(dimethylsiloxane) (PDMS) films. The fabricated superhydrophobic surface has triple icephobicity, which can be activated even at low temperatures. The triple icephobicity is triggered by an applied voltage to achieve excellent water-repellent and icephobic capabilities, even at -40 °C. Additionally, theoretical calculations reveal that a droplet on a superhydrophobic surface loses heat at a rate of 8.91 × 10-5 J/s, which is 2 orders of magnitude slower than a flat surface (2.15 × 10-3 J/s). Also, at -40 °C, the mechanical interlocking force formed between the superhydrophobic surface and ice can be released by the heating property of the superhydrophobic surface. This low-energy, multifunctional superhydrophobic surface opens up new possibilities for bionic smart multifunctional materials in icephobic applications.

4.
Polymers (Basel) ; 14(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406323

RESUMO

In this study, chopped natural bamboo fibers were successfully added in the benzoxazine matrix by the hot-pressing method to fabricate environmentally friendly bio-composite. The mechanical behaviors and failure mechanisms of neat benzoxazine matrix and its bamboo fiber composite under different tensile strain rates (quasi-static, 35/s and 110/s) were comparatively investigated using SHTB device (split-Hopkinson tensile bar), high-speed camera, DIC method (digital image correlation), and SEM observation (scanning electron microscopy). The results showed the composite exhibited 30.02% and 25.21% higher strength than that of neat benzoxazine under strain rates of 35/s and 110/s, respectively. However, under quasi-static tensile loading, the tensile strength of the composite was not higher than that of neat benzoxazine. The SEM and high-speed camera images showed the bamboo fibers displayed different reinforcing mechanisms under different strain rates. The chopped bamboo fibers could strengthen the composite effectively under dynamic tensile loadings. However, under quasi-static loading, the tensile strength of the composite was largely determined by the potential defects (such as small bubbles, pores, and fiber agglomerations) in the composite.

5.
ACS Appl Mater Interfaces ; 14(2): 3526-3535, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990109

RESUMO

Surface 2019, surface charge density (SCD) gradient printing-driven droplet transport, has attracted considerable attention as a novel and effective approach, which adopts the water droplet impacting a nonwetting surface to create a reprintable SCD gradient pathway conveniently and realizes the high-velocity and long-distance transport of droplets. In the present work, we further investigated the effects of electrothermal behavior on SCD gradient printing on hydrophobic surfaces by considering the droplet impact dynamics. After the electrothermal function was activated, the wettability of the hydrophobic surface improved in terms of the spreading factor history and the infiltration depth, which increased the probability of solid/liquid contact electrification to generate a more favorable SCD gradient. Since the hydrophobic surface was negatively charged by droplet impact, polarized droplets rolled forward along the preprinted SCD gradient pathway due to opposite charge attraction. Based on these results, we designed a SCD gradient printer with an electrothermal function for hydrophobic surfaces. Subsequently, the kinematic parameters of rolling droplets on hydrophobic surfaces were observed and quantified to evaluate the improvements resulting from the electrothermal function.

6.
Langmuir ; 36(48): 14483-14494, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211496

RESUMO

The icephobicity property of multifunctional surfaces has been widely studied due to their potential application in the aerospace field. Herein, a controllable CNW/PDMS biomimetic nanocomposite film with a superhydrophobic surface is fabricated. The microcolumns are etched on the surface of the biomimetic nanocomposite to provide superhydrophobicity. Two defense strategies of biomimetic nanocomposites are proposed while passive anti-icing and active electrothermal deicing behaviors of the biomimetic nanocomposite are experimentally studied. It is found that the initial nucleation time of a single water droplet is delayed by 353.3 s on the superhydrophobic surface relative to the hydrophilic surface. The adhesion strength increases with the increase of surface roughness. The heating uniformity on the biomimetic nanocomposite surface was validated by infrared thermography technology. The ice layer is completely melted within 150 s under 40 V voltage captured by a noncontact infrared camera. The proposed strategy was validated by the characterization of the passive anti-icing and active electrothermal deicing property from biomimetic nanocomposites with superhydrophobic microstructure surfaces. Research results show that the two lines of defense collaborative work for an icephobicity system were able to keep biomimetic nanocomposite surfaces ice-free under test conditions.

7.
Polymers (Basel) ; 12(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806631

RESUMO

As a type of environmentally-friendly and low-cost natural material, bamboo fibers exhibit excellent mechanical properties. In this study, a bamboo fiber reinforced polybenzoxazine composite was fabricated by an improved hot-pressing process. The dynamic compressive behaviors of neat benzoxazine and its composite were comparatively studied by an SHPB (split Hopkinson pressure bar) apparatus. SHPB tests showed that the benzoxazine matrix and its composite exhibited significantly positive strain rate sensitivity at nominal strain rates in the range of 0.006-2500/s. During the impact loadings, the progressive deformation and failure of neat benzoxazine and bamboo composite were investigated by capturing real-time images with a high-speed camera. In comparison with neat benzoxazine, the bamboo composite had slightly higher maximum compressive stress under the same strain rates. It is noteworthy that the crashworthiness of the composite was remarkably better than that of neat benzoxazine due to the incorporation of bamboo fibers. For example, the energy absorption of bamboo composite was 105.7% higher than that of neat benzoxazine at a strain rate of 2500/s. The dynamic compressive properties of benzoxazine resin were much better than most of the conventional thermosetting resins. These results could guide the future application of this kind of composites.

8.
Langmuir ; 35(43): 14133-14140, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31573206

RESUMO

The sliding behavior of anisotropic surfaces is a crucial property to their applications from fundamental research to practical fields. Herein, we propose a theoretical model for analyzing the sliding behavior based on the concept of adhesion energy. Surface Evolver simulation is conducted to determine the adhesion energy per unit area. The microgrooved surfaces are fabricated and characterized to validate the proposed theory. It is found that the apparent contact angle measured along the direction parallel to the strips increases with the increase of microgroove width, while the corresponding sliding angles exhibit an opposite trend. The adhesion energy per unit area has a constant value regardless of the droplet volume. The different sliding behaviors of anisotropic surfaces along the perpendicular and parallel directions are attributed to the difference in the corresponding adhesion energies per unit area. The proposed model is expected to be used for predicting the sliding behavior of anisotropic surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA