Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Am Soc Nephrol ; 33(9): 1708-1725, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35918147

RESUMO

BACKGROUND: Emerging evidence indicates that epigenetic modulation of gene expression plays a key role in the progression of autosomal dominant polycystic kidney disease (ADPKD). However, the molecular basis for how the altered epigenome modulates transcriptional responses, and thereby disease progression in ADPKD, remains largely unknown. METHODS: Kidneys from control and ADPKD mice were examined for the expression of CDYL and histone acylations. CDYL expression and its correlation with disease severity were analyzed in a cohort of patients with ADPKD. Cdyl transgenic mice were crossed with Pkd1 knockout mice to explore CDYL's role in ADPKD progression. Integrated cistromic and transcriptomic analyses were performed to identify direct CDYL target genes. High-sensitivity mass spectrometry analyses were undertaken to characterize CDYL-regulated histone lysine crotonylations (Kcr). Biochemical analysis and zebrafish models were used for investigating CDYL phase separation. RESULTS: CDYL was downregulated in ADPKD kidneys, accompanied by an increase of histone Kcr. Genetic overexpression of Cdyl reduced histone Kcr and slowed cyst growth. We identified CDYL-regulated cyst-associated genes, whose downregulation depended on CDYL-mediated suppression of histone Kcr. CDYL assembled nuclear condensates through liquid-liquid phase separation in cultured kidney epithelial cells and in normal kidney tissues. The phase-separating capacity of CDYL was required for efficient suppression of locus-specific histone Kcr, of expression of its target genes, and of cyst growth. CONCLUSIONS: These results elucidate a mechanism by which CDYL nuclear condensation links histone Kcr to transcriptional responses and cystogenesis in ADPKD.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Histonas/metabolismo , Peixe-Zebra/metabolismo , Rim/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Cistos/genética , Canais de Cátion TRPP/genética
2.
Gene ; 833: 146553, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35569768

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of liver disease, which lacks effective treatments. Abnormal lipid metabolism and inflammation are the most prominent pathological manifestations of NAFLD. Recently, it has been reported that white tea extract (WTE) can regulate lipid metabolism in human adipocytes and liver cancer cells in vitro. However, its beneficial effects on NAFLD and the underlying mechanisms remain largely unknown. Here, we showed that WTE alleviated obesity, lipid accumulation, hepatic steatosis, and liver injury in a mouse model of NAFLD. Mechanistically, we demonstrated that WTE exerted the anti-NAFLD effect by decreasing the expression of genes involved in lipid transport and synthesis processes while activating genes associated with energy expenditure. In addition, a comparison of the transcriptional responses of WTE with that of green tea extract (GTE) revealed that WTE can not only regulate lipid metabolism and stress response like GTE but also regulate antioxidant and inflammatory pathways more effectively. Taken together, our findings demonstrate that WTE inhibits the progression of NAFLD in a mouse model and indicate that WTE can be a potential dietary intervention for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Antioxidantes/farmacologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Chá/metabolismo
3.
J Med Chem ; 65(11): 7717-7728, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35363466

RESUMO

Prevailing strategies directing early-phase drug discovery heavily rely on equilibrium-based metrics such as affinity, which overlooks the kinetic process of a drug molecule interacting with its target. Herein, we developed a number of vasopressin V2 receptor (V2R) antagonists with divergent binding affinities and kinetics for autosomal dominant polycystic kidney disease (ADPKD). Surprisingly, the residence time of the V2R antagonists, but not their affinity, was correlated with the efficacy in both ex vivo and in vivo models of ADPKD. We envision that the kinetics-directed drug candidate selection and development may have general applicability for ADPKD and other therapeutic areas as well.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Rim Policístico Autossômico Dominante , Receptores de Vasopressinas , Antagonistas dos Receptores de Hormônios Antidiuréticos/química , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Desenho de Fármacos , Humanos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Receptores de Vasopressinas/metabolismo
4.
Adv Sci (Weinh) ; 9(10): e2104578, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037420

RESUMO

Formation of biomolecular condensates by phase separation has recently emerged as a new principle for regulating gene expression in response to extracellular signaling. However, the molecular mechanisms underlying the coupling of signal transduction and gene activation through condensate formation, and how dysregulation of these mechanisms contributes to disease progression, remain elusive. Here, the authors report that CREB-regulated transcription coactivator 2 (CRTC2) translocates to the nucleus and forms phase-separated condensates upon activation of cAMP signaling. They show that intranuclear CRTC2 interacts with positive transcription elongation factor b (P-TEFb) and activates P-TEFb by disrupting the inhibitory 7SK snRNP complex. Aberrantly elevated cAMP signaling plays central roles in the development of autosomal dominant polycystic kidney disease (ADPKD). They find that CRTC2 localizes to the nucleus and forms condensates in cystic epithelial cells of both mouse and human ADPKD kidneys. Genetic depletion of CRTC2 suppresses cyst growth in an orthologous ADPKD mouse model. Using integrative transcriptomic and cistromic analyses, they identify CRTC2-regulated cystogenesis-associated genes, whose activation depends on CRTC2 condensate-facilitated P-TEFb recruitment and the release of paused RNA polymerase II. Together, their findings elucidate a mechanism by which CRTC2 nuclear condensation conveys cAMP signaling to transcription elongation activation and thereby promotes cystogenesis in ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Animais , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
5.
J Am Soc Nephrol ; 32(10): 2529-2541, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34162733

RESUMO

BACKGROUND: Genome-wide mapping of transcription factor (TF) binding sites is essential to identify a TF's direct target genes in kidney development and diseases. However, due to the cellular complexity of the kidney and limited numbers of a given cell type, it has been challenging to determine the binding sites of a TF in vivo. cAMP response element-binding protein (CREB) is phosphorylated and hyperactive in autosomal dominant polycystic kidney disease (ADPKD). We focus on CREB as an example to profile genomic loci bound by a TF and to identify its target genes using low numbers of specific kidney cells. METHODS: Cleavage under targets and release using nuclease (CUT&RUN) assays were performed with Dolichos biflorus agglutinin (DBA)-positive tubular epithelial cells from normal and ADPKD mouse kidneys. Pharmacologic inhibition of CREB with 666-15 and genetic inhibition with A-CREB were undertaken using ADPKD mouse models. RESULTS: CUT&RUN to profile genome-wide distribution of phosphorylated CREB (p-CREB) indicated correlation of p-CREB binding with active histone modifications (H3K4me3 and H3K27ac) in cystic epithelial cells. Integrative analysis with CUT&RUN and RNA-sequencing revealed CREB direct targets, including genes involved in ribosome biogenesis and protein synthesis. Pharmacologic and genetic inhibition of CREB suppressed cyst growth in ADPKD mouse models. CONCLUSIONS: CREB promotes cystogenesis by activating ribosome biogenesis genes. CUT&RUN, coupled with transcriptomic analysis, enables interrogation of TF binding and identification of direct TF targets from a low number of specific kidney cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Anilidas/farmacologia , Animais , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Progressão da Doença , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Naftalenos/farmacologia , Fosforilação , Rim Policístico Autossômico Dominante/patologia , Análise de Sequência de RNA
6.
Sci Transl Med ; 12(554)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727915

RESUMO

Oxidative stress is emerging as a crucial contributor to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), but the molecular mechanisms underlying the disturbed redox homeostasis in cystic cells remain elusive. Here, we identified the impaired activity of the NRF2 (nuclear factor erythroid 2-related factor 2) antioxidant pathway as a driver of oxidative damage and ADPKD progression. Using a quantitative proteomic approach, together with biochemical analyses, we found that increased degradation of NRF2 protein suppressed the NRF2 antioxidant pathway in ADPKD mouse kidneys. In a cohort of patients with ADPKD, reactive oxygen species (ROS) frequently accumulated, and their production correlated negatively with NRF2 abundance and positively with disease severity. In an orthologous ADPKD mouse model, genetic deletion of Nrf2 further increased ROS generation and promoted cyst growth, whereas pharmacological induction of NRF2 reduced ROS production and slowed cystogenesis and disease progression. Mechanistically, pharmacological induction of NRF2 remodeled enhancer landscapes and activated NRF2-bound enhancer-associated genes in ADPKD cells. The activation domain of NRF2 formed phase-separated condensates with MEDIATOR complex subunit MED16 in vitro, and optimal Mediator recruitment to genomic loci depended on NRF2 in vivo. Together, these findings indicate that NRF2 remodels enhancer landscapes and activates its target genes through a phase separation mechanism and that activation of NRF2 represents a promising strategy for restoring redox homeostasis and combatting ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Animais , Humanos , Rim/metabolismo , Complexo Mediador/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo
7.
Nat Metab ; 2(8): 717-731, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32694829

RESUMO

Metabolic reprogramming is emerging as a key pathological contributor to the progression of autosomal dominant polycystic kidney disease (ADPKD), but the molecular mechanisms underlying dysregulated cellular metabolism in cystic cells remain elusive. Super-enhancers (SEs) are large clusters of transcriptional enhancers that drive robust expression of cell identity and disease genes. Here, we show that SEs undergo extensive remodelling during cystogenesis and that SE-associated transcripts are most enriched for metabolic processes in cystic cells. Inhibition of cyclin-dependent kinase 7 (CDK7), a transcriptional kinase required for assembly and maintenance of SEs, or AMP deaminase 3 (AMPD3), one of the SE-driven and CDK7-controlled metabolic target genes, delays cyst growth in ADPKD mouse models. In a cohort of people with ADPKD, CDK7 expression was frequently elevated, and its expression was correlated with AMPD3 expression and disease severity. Together, our findings elucidate a mechanism by which SE controls transcription of metabolic genes during cystogenesis, and identify SE-driven metabolic reprogramming as a promising therapeutic target for ADPKD treatment.


Assuntos
Rim Policístico Autossômico Dominante , Animais , Feminino , Humanos , Masculino , Camundongos , AMP Desaminase/genética , AMP Desaminase/metabolismo , Apoptose/efeitos dos fármacos , Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Inibidores Enzimáticos/farmacologia , Marcação de Genes , Rim/metabolismo , Rim/patologia , Fenilenodiaminas/farmacologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Pirimidinas/farmacologia
8.
Nucleic Acids Res ; 48(12): 6563-6582, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32459350

RESUMO

Functional crosstalk between histone modifications and chromatin remodeling has emerged as a key regulatory mode of transcriptional control during cell fate decisions, but the underlying mechanisms are not fully understood. Here we discover an HRP2-DPF3a-BAF epigenetic pathway that coordinates methylated histone H3 lysine 36 (H3K36me) and ATP-dependent chromatin remodeling to regulate chromatin dynamics and gene transcription during myogenic differentiation. Using siRNA screening targeting epigenetic modifiers, we identify hepatoma-derived growth factor-related protein 2 (HRP2) as a key regulator of myogenesis. Knockout of HRP2 in mice leads to impaired muscle regeneration. Mechanistically, through its HIV integrase binding domain (IBD), HRP2 associates with the BRG1/BRM-associated factor (BAF) chromatin remodeling complex by interacting directly with the BAF45c (DPF3a) subunit. Through its Pro-Trp-Trp-Pro (PWWP) domain, HRP2 preferentially binds to H3K36me2. Consistent with the biochemical studies, ChIP-seq analyses show that HRP2 colocalizes with DPF3a across the genome and that the recruitment of HRP2/DPF3a to chromatin is dependent on H3K36me2. Integrative transcriptomic and cistromic analyses, coupled with ATAC-seq, reveal that HRP2 and DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of BRG1, the ATPase subunit of the BAF complex. Taken together, these results illuminate a key role for the HRP2-DPF3a-BAF complex in the epigenetic coordination of gene transcription during myogenic differentiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Código das Histonas , Mioblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Masculino , Camundongos , Desenvolvimento Muscular , Mioblastos/citologia , Ligação Proteica , Fatores de Transcrição/genética
9.
Sci Adv ; 5(6): eaaw3593, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31183407

RESUMO

Positive transcription elongation factor b (P-TEFb) functions as a central regulator of transcription elongation. Activation of P-TEFb occurs through its dissociation from the transcriptionally inactive P-TEFb/HEXIM1/7SK snRNP complex. However, the mechanisms of signal-regulated P-TEFb activation and its roles in human diseases remain largely unknown. Here, we demonstrate that cAMP-PKA signaling disrupts the inactive P-TEFb/HEXIM1/7SK snRNP complex by PKA-mediated phosphorylation of HEXIM1 at serine-158. The cAMP pathway plays central roles in the development of autosomal dominant polycystic kidney disease (ADPKD), and we show that P-TEFb is hyperactivated in mouse and human ADPKD kidneys. Genetic activation of P-TEFb promotes cyst formation in a zebrafish ADPKD model, while pharmacological inhibition of P-TEFb attenuates cyst development by suppressing the pathological gene expression program in ADPKD mice. Our study therefore elucidates a mechanism by which P-TEFb activation by cAMP-PKA signaling promotes cystogenesis in ADPKD.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Rim Policístico Autossômico Dominante/patologia , Fator B de Elongação Transcricional Positiva/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/química , Cistos/metabolismo , Cistos/patologia , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Fosforilação , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Fator B de Elongação Transcricional Positiva/genética , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Transdução de Sinais , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA