Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell Commun Signal ; 22(1): 267, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745232

RESUMO

Low sperm motility is a significant contributor to male infertility. beta-defensins have been implicated in host defence and the acquisition of sperm motility; however, the regulatory mechanisms governing their gene expression patterns and functions remain poorly understood. In this study, we performed single-cell RNA and spatial transcriptome sequencing to investigate the cellular composition of testicular and epididymal tissues and examined their gene expression characteristics. In the epididymis, we found that epididymal epithelial cells display a region specificity of gene expression in different epididymal segments, including the beta-defensin family genes. In particular, Defb15, Defb18, Defb20, Defb25 and Defb48 are specific to the caput; Defb22, Defb23 and Defb26 to the corpus; Defb2 and Defb9 to the cauda of the epididymis. To confirm this, we performed mRNA fluorescence in situ hybridisation (FISH) targeting certain exon region of beta-defensin genes, and found some of their expression matched the sequencing results and displayed a close connection with epididimosome marker gene Cd63. In addition, we paid attention to the Sertoli cells and Leydig cells in the testis, along with fibroblasts and smooth muscle cells in the epididymis, by demonstrating their gene expression profile and spatial information. Our study provides a single-cell and spatial landscape for analysing the gene expression characteristics of testicular and epididymal environments and has important implications for the study of spermatogenesis and sperm maturation.


Assuntos
Epididimo , Análise de Célula Única , Maturação do Esperma , Transcriptoma , beta-Defensinas , Masculino , Animais , beta-Defensinas/genética , beta-Defensinas/metabolismo , Camundongos , Transcriptoma/genética , Maturação do Esperma/genética , Epididimo/metabolismo , Espermatozoides/metabolismo , Família Multigênica , Camundongos Endogâmicos C57BL , Testículo/metabolismo
2.
Biomed Pharmacother ; 175: 116637, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653111

RESUMO

Because of its enhanced antitumor efficacy, lapatinib (LAP) is commonly used clinically in combination with the anthracycline drug doxorubicin (DOX) to treat metastatic breast cancer. While it is well recognized that this combination chemotherapy can lead to an increased risk of cardiotoxicity in adult women, its potential cardiotoxicity in the fetus during pregnancy remains understudied. Here, we aimed to examine the combination of LAP chemotherapy and DOX-induced cardiotoxicity in the fetus using a zebrafish embryonic system and investigate the underlying pathologic mechanisms. First, we examined the dose-dependent cardiotoxicity of combined LAP and DOX exposure in zebrafish embryos, which mostly manifested as pericardial edema, bradycardia, cardiac function decline and reduced survival. Second, we revealed that a significant increase in oxidative stress concurrent with activated MAPK signaling, as indicated by increased protein expression of phosphorylated p38 and Jnk, was a notable pathophysiological event after combined LAP and DOX exposure. Third, we showed that inhibiting MAPK signaling by pharmacological treatment with the p38MAPK inhibitor SB203580 or genetic ablation of the map2k6 gene could significantly alleviate combined LAP and DOX exposure-induced cardiotoxicity. Thus, we provided both pharmacologic and genetic evidence to suggest that inhibiting MAPK signaling could exert cardioprotective effects. These findings have implications for understanding the potential cardiotoxicity induced by LAP and DOX combinational chemotherapy in the fetus during pregnancy, which could be leveraged for the development of new therapeutic strategies.


Assuntos
Cardiotoxicidade , Doxorrubicina , Lapatinib , Sistema de Sinalização das MAP Quinases , Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Peixe-Zebra/embriologia , Doxorrubicina/toxicidade , Doxorrubicina/efeitos adversos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Cardiotoxicidade/etiologia , Lapatinib/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Feminino
3.
Vet Microbiol ; 293: 110068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579482

RESUMO

Ferroptosis is a form of controlled cell death that was first described relatively recently and that is dependent on the formation and accumulation of lipid free radicals through an iron-mediated mechanism. A growing body of evidence supports the close relationship between pathogenic infections and ferroptotic cell death, particularly for viral infections. Ferroptosis is also closely tied to the pathogenic development of hepatic steatosis and other forms of liver disease. Fowl adenovirus serotype 4 (FAdV-4) is a hepatotropic aviadenovirus causing hydropericardium syndrome (HPS) that is capable of impacting fat metabolism. However, it remains uncertain as to what role, if any, ferroptotic death plays in the context of FAdV-4 infection. Here, FAdV-4 was found to promote ferroptosis via the p53-SLC7A11-GPX4 axis, while ferrostain-1 was capable of inhibiting this FAdV-4-mediated ferroptotic death through marked reductions in lipid peroxidation. The incidence of FAdV-4-induced fatty liver was also found to be associated with the activation of ferroptotic activity. Together, these results offer novel insights regarding potential approaches to treating HPS.


Assuntos
Ferroptose , Metabolismo dos Lipídeos , Animais , Peroxidação de Lipídeos , Galinhas , Aviadenovirus/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Linhagem Celular , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Infecções por Adenoviridae/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Doenças das Aves Domésticas/virologia
4.
J Orthop Translat ; 42: 113-126, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37680904

RESUMO

Background: Dedifferentiated fat cells (DFATs) are highly homogeneous and multipotent compared with adipose-derived stromal cells (SCs). Infrapatellar fat pad (IFP)-SCs have advanced chondrogenic potency; however, whether IFP-DFATs could serve as better cell material remains unclear. Here, we aimed to examine the influence of age and body mass index (BMI) on the features of IFPs and IFP-derived cells (IFP-SCs and IFP-DFATs) with exploration of the clinical utilization of IFP-DFATs. Methods: We collected IFPs with isolation of paired IFP-SCs and IFP-DFATs from individuals aged 65 years and older with distinct body weights who underwent total knee replacement for osteoarthritis (OA). Flow cytometry was used to characterize the cellular immunophenotypes. Adipogenesis and chondrogenesis were performed in vitro. Real-time qPCR, western blotting, and Oil Red O or Alcian blue staining were performed to evaluate inflammation, adipogenesis, and chondrogenesis. RNA sequencing and Seahorse analyses were conducted to explore the underlying mechanisms. Results: We found that IFPs from old or normal-weight individuals with knee OA were pro-inflammatory, and that interleukin-6 (IL-6) signaling was associated with multiple immune-related molecules, whereas IFP-derived cells could escape the inflammatory properties. Aging plays an important role in diminishing the chondrogenic and adipogenic abilities of IFP-SCs; however, this effect was avoided in IFP-DFATs. Generally, IFP-DFATs presented a steady state of chondrogenesis (less influenced by age) and consistently enhanced adipogenesis compared to paired IFP-SCs in different age or BMI groups. RNA sequencing and Seahorse analysis suggested that the downregulation of eukaryotic initiation factor 2 (EIF2) signaling and enhanced mitochondrial function may contribute to the improved cellular biology of IFP-DFATs. Conclusions: Our data indicate that IFP-DFATs are superior cell material compared to IFP-SCs for cartilage differentiation and adipogenesis, particularly in advanced aging patients with knee OA. The translational potential of this article: These results provide a novel concept and supportive evidence for the use of IFP-DFATs for cell therapy or tissue engineering in patients with knee OA. Using Ingenuity Pathway Analysis (IPA) of RNA-seq data and Seahorse analysis of mitochondrial metabolic parameters, we highlighted that some molecules, signaling pathways, and mitochondrial functions are likely to be jointly coordinated to determine the enhanced biological function in IFP-DFATs.

5.
Stem Cell Res Ther ; 14(1): 17, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737797

RESUMO

BACKGROUND: Many laboratories have described the in vitro isolation of multipotent cells with stem cell properties from the skin of various species termed skin-derived stem cells (SDSCs). However, the cellular origin of these cells and their capability to give rise, among various cell types, to male germ cells, remain largely unexplored. METHODS: SDSCs were isolated from newborn mice skin, and then differentiated into primordial germ cell-like cells (PGCLCs) in vitro. Single-cell RNA sequencing (scRNA-seq) was then applied to dissect the cellular origin of SDSCs using cells isolated from newborn mouse skin and SDSC colonies. Based on an optimized culture strategy, we successfully generated spermatogonial stem cell-like cells (SSCLCs) in vitro. RESULTS: Here, using scRNA-seq and analyzing the profile of 7543 single-cell transcriptomes from newborn mouse skin and SDSCs, we discovered that they mainly consist of multipotent papillary dermal fibroblast progenitors (pDFPs) residing in the dermal layer. Moreover, we found that epidermal growth factor (EGF) signaling is pivotal for the capability of these progenitors to proliferate and form large colonies in vitro. Finally, we optimized the protocol to efficiently generate PGCLCs from SDSCs. Furthermore, PGCLCs were induced into SSCLCs and these SSCLCs showed meiotic potential when cultured with testicular organoids. CONCLUSIONS: Our findings here identify pDFPs as SDSCs derived from newborn skin and show for the first time that such precursors can be induced to generate cells of the male germline.


Assuntos
Células Germinativas , Células-Tronco Hematopoéticas , Animais , Camundongos , Células Germinativas/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes , Células Cultivadas , Fibroblastos
6.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835518

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is largely an autosomal dominant genetic disorder manifesting fibrofatty infiltration and ventricular arrhythmia with predominantly right ventricular involvement. ACM is one of the major conditions associated with an increased risk of sudden cardiac death, most notably in young individuals and athletes. ACM has strong genetic determinants, and genetic variants in more than 25 genes have been identified to be associated with ACM, accounting for approximately 60% of ACM cases. Genetic studies of ACM in vertebrate animal models such as zebrafish (Danio rerio), which are highly amenable to large-scale genetic and drug screenings, offer unique opportunities to identify and functionally assess new genetic variants associated with ACM and to dissect the underlying molecular and cellular mechanisms at the whole-organism level. Here, we summarize key genes implicated in ACM. We discuss the use of zebrafish models, categorized according to gene manipulation approaches, such as gene knockdown, gene knock-out, transgenic overexpression, and CRISPR/Cas9-mediated knock-in, to study the genetic underpinning and mechanism of ACM. Information gained from genetic and pharmacogenomic studies in such animal models can not only increase our understanding of the pathophysiology of disease progression, but also guide disease diagnosis, prognosis, and the development of innovative therapeutic strategies.


Assuntos
Displasia Arritmogênica Ventricular Direita , Peixe-Zebra , Animais , Displasia Arritmogênica Ventricular Direita/genética , Modelos Animais , Arritmias Cardíacas , Morte Súbita Cardíaca
7.
Food Funct ; 13(24): 13028-13039, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36449017

RESUMO

Toxicology studies provide a reliable dose range for the use of compounds. Zebrafish show unique advantages in toxicology research. Cinnamaldehyde (Cin) is one of the main active compounds isolated from Cinnamon trees and other species of the genus Cinnamomum. In this study, we investigated the developmental neurotoxicity of cinnamaldehyde in zebrafish and preliminarily explored its underlying mechanism. Cinnamaldehyde causes developmental neurotoxicity in zebrafish, as evidenced by the damage to ventricular structures, eye malformations, shortened body length, trunk curvature, decreased neuronal fluorescence, and pericardial oedema. Moreover, it can induce abnormal behaviour and gene expression in zebrafish. After treatment with the oxidative stress inhibitor astaxanthin, the behaviour and abnormal gene expression were reversed. All of these data demonstrated that the developmental neurotoxicity of cinnamaldehyde might be attributed to oxidative stress. In addition, this study also confirmed that zebrafish is a reliable model for toxicity studies.


Assuntos
Síndromes Neurotóxicas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Síndromes Neurotóxicas/genética , Estresse Oxidativo , Acroleína/farmacologia
8.
BMC Biol ; 20(1): 121, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35606800

RESUMO

BACKGROUND: Men with prediabetes often exhibit concomitant low-quality sperm production or even infertility, problems which urgently require improved therapeutic options. In this study, we have established a sheep model of diet-induced prediabetes that is associated with spermatogenic defects and have explored the possible underlying metabolic causes. RESULTS: We compared male sheep fed a normal diet with those in which prediabetes was induced by a rich diet and with a third group in which the rich diet was supplemented by melatonin. Only the rich diet group had symptoms of prediabetes, and in these sheep, we found impaired spermatogenesis characterized by a block in the development of round spermatids and an increased quantity of testicular apoptotic cells. Comparing the gut microbiomes and intestinal digest metabolomes of the three groups revealed a distinctive difference in the taxonomic composition of the microbiota in prediabetic sheep, and an altered metabolome, whose most significant feature was altered sphingosine metabolism; elevated sphingosine was also found in blood and testes. Administration of melatonin alleviated the symptoms of prediabetes, including those of impaired spermatogenesis, while restoring a more normal microbiota and metabolic levels of sphingosine. Fecal microbiota transplantation from prediabetic sheep induced elevated sphingosine levels and impaired spermatogenesis in recipient mice, indicating a causal role of gut microbiota in these phenotypes. CONCLUSIONS: Our results point to a key role of sphingosine in the disruption of spermatogenesis in prediabetic sheep and suggest it could be a useful disease marker; furthermore, melatonin represents a potential prebiotic agent for the treatment of male infertility caused by prediabetes.


Assuntos
Microbioma Gastrointestinal , Melatonina , Estado Pré-Diabético , Animais , Apoptose , Humanos , Masculino , Camundongos , Estado Pré-Diabético/complicações , Ovinos , Esfingosina , Testículo
9.
ACS Nano ; 16(4): 6359-6371, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35324149

RESUMO

Controllable and visible delivery of therapeutic agents is critical for tumor precise therapy. Tumor targeting and deep penetration of therapeutic agents are still challenging issues for controllable delivery. Visible drug delivery with imaging navigation can optimize the treatment window for personalized medicine. Herein, a biomimetic platelet intelligent vehicle with navigation (IRDNP-PLT) was developed to achieve controllable and visible delivery with a navigation system, a driving system, and a loading system. The platelets acted as engines and drug repositories to exert the target driving and delivery functions. The fluorescent photothermal agent IR-820 was introduced in the platform to offer an imaging navigation for the intelligent platelet vehicle in addition to photothermal therapy. The nanodrug-loaded platelets enabled efficient drug loading and controlled release of the therapeutic payload by encapsulating photothermal-/pH-sensitive chemotherapeutic nanoparticles (PDA@Dox NPs). In in vivo experiments on 4T1 tumor-bearing mice models, IRDNP-PLT performed well in tumor targeting and showed excellent therapeutic efficacy and tumor recurrence prevention ability. The intelligent platelet vehicle achieved the functions of tumor targeting and deep penetration, fluorescence imaging guidance, photocontrolled drug release, and chemo-photothermal combination therapy, suggesting the advancement for tumor precise delivery and efficient therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Camundongos , Animais , Fototerapia/métodos , Hipertermia Induzida/métodos , Doxorrubicina , Plaquetas , Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
10.
Gut ; 71(1): 78-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33504491

RESUMO

OBJECTIVE: Effects of the diet-induced gut microbiota dysbiosis reach far beyond the gut. We aim to uncover the direct evidence involving the gut-testis axis in the aetiology of impaired spermatogenesis. DESIGN: An excessive-energy diet-induced metabolic syndrome (MetS) sheep model was established. The testicular samples, host metabolomes and gut microbiome were analysed. Faecal microbiota transplantation (FMT) confirmed the linkage between gut microbiota and spermatogenesis. RESULTS: We demonstrated that the number of arrested spermatogonia was markedly elevated by using 10× single-cell RNA-seq in the MetS model. Furthermore, through using metabolomics profiling and 16S rDNA-seq, we discovered that the absorption of vitamin A in the gut was abolished due to a notable reduction of bile acid levels, which was significantly associated with reduced abundance of Ruminococcaceae_NK4A214_group. Notably, the abnormal metabolic effects of vitamin A were transferable to the testicular cells through the circulating blood, which contributed to abnormal spermatogenesis, as confirmed by FMT. CONCLUSION: These findings define a starting point for linking the testicular function and regulation of gut microbiota via host metabolomes and will be of potential value for the treatment of male infertility in MetS.


Assuntos
Microbioma Gastrointestinal/fisiologia , Síndrome Metabólica/fisiopatologia , Espermatogênese/fisiologia , Testículo/fisiologia , Vitamina A/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Disbiose/fisiopatologia , Masculino , Metaboloma , Ovinos
12.
Biomed Res Int ; 2021: 8569921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327238

RESUMO

Doxorubicin is a cornerstone chemotherapeutic drug widely used to treat various cancers; its dose-dependent cardiomyopathy, however, is one of the leading causes of treatment-associated mortality in cancer survivors. Patients' threshold doses leading to doxorubicin-induced cardiomyopathy (DIC) and heart failure are highly variable, mostly due to genetic variations in individuals' genomes. However, genetic susceptibility to DIC remains largely unidentified. Here, we combined a genetic approach in the zebrafish (Danio rerio) animal model with a genome-wide association study (GWAS) in humans to identify genetic susceptibility to DIC and heart failure. We firstly reported the cardiac and skeletal muscle-specific expression and sarcomeric localization of the microtubule-associated protein 7 domain-containing protein 1b (Map7d1b) in zebrafish, followed by expression validation in mice. We then revealed that disruption of the map7d1b gene function exaggerated DIC effects in adult zebrafish. Mechanistically, the exacerbated DIC are likely conveyed by impaired autophagic degradation and elevated protein aggregation. Lastly, we identified 2 MAP7D1 gene variants associated with cardiac functional decline and heart failure in cancer patients who received doxorubicin therapy. Together, this study identifies MAP7D1 as a clinically relevant susceptibility gene to DIC and heart failure, providing useful information to stratify cancer patients with a high risk of incurring severe cardiomyopathy and heart failure after receiving chemotherapy.


Assuntos
Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Doxorrubicina/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Apoptose , Autofagia , Elementos de DNA Transponíveis/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/fisiopatologia , Modelos Biológicos , Músculo Esquelético/metabolismo , Mutação/genética , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Polimorfismo de Nucleotídeo Único/genética , Agregados Proteicos , Fatores de Risco , Estresse Fisiológico
13.
Transl Psychiatry ; 11(1): 343, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083506

RESUMO

BACKGROUND: Clozapine is considered to be the most effective antipsychotic medication for schizophrenia. However, it is associated with several adverse effects such as leukopenia, and the underlying mechanism has not yet been fully elucidated. The authors performed a genome-wide association study (GWAS) in a Chinese population to identify genetic markers for clozapine-induced leukopenia (CIL) and clozapine-induced neutropenia (CIN). METHODS: A total of 1879 patients (225 CIL cases, including 43 CIN cases, and 1,654 controls) of Chinese descent were included. Data from common and rare single nucleotide polymorphisms (SNPs) were tested for association. The authors also performed a trans-ancestry meta-analysis with GWAS results of European individuals from the Clozapine-Induced Agranulocytosis Consortium (CIAC). RESULTS: The authors identified several novel loci reaching the threshold of genome-wide significance level (P < 5 × 10-8). Three novel loci were associated with CIL while six were associated with CIN, and two T cell related genes (TRAC and TRAT1) were implicated. The authors also observed that one locus with evidence close to genome-wide significance (P = 5.08 × 10-8) was near the HLA-B gene in the major histocompatibility complex region in the trans-ancestry meta-analysis. CONCLUSIONS: The associations provide novel and valuable understanding of the genetic and immune causes of CIL and CIN, which is useful for improving clinical management of clozapine related treatment for schizophrenia. Causal variants and related underlying molecular mechanisms need to be understood in future developments.


Assuntos
Antipsicóticos , Clozapina , Neutropenia , Esquizofrenia , Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Estudo de Associação Genômica Ampla , Humanos , Neutropenia/induzido quimicamente , Neutropenia/tratamento farmacológico , Neutropenia/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
14.
J Autoimmun ; 116: 102562, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168359

RESUMO

Adult-onset Still's disease (AOSD) is a rare autoinflammatory disease with systemic involvement, and its pathophysiology remains unclear. Genome-wide association studies (GWAS) in the Chinese population have revealed an association between AOSD and the major histocompatibility complex (MHC) locus; however, causal variants in the MHC remain undetermined. In the present study, we identified independent amino-acid polymorphisms in human leukocyte antigen (HLA) molecules that are associated with Han Chinese patients with AOSD by fine-mapping the MHC locus. Through conditional analyses, we identified position 34 in HLA-DQα1 (p = 1.44 × 10-14) and Asn in HLA-DRß1 position 37 (p = 5.12 × 10-11) as the major determinants for AOSD. Moreover, we identified the associations for three main HLA class II alleles: HLA-DQB1*06:02 (OR = 2.70, p = 3.02 × 10-14), HLA-DRB1*15:01 (OR = 2.44, p = 3.66 × 10-13), and HLA-DQA1*01:02 (OR = 1.97, p = 1.09 × 10-9). This study reveals the relationship between functional variations in the class II HLA region and AOSD, implicating the MHC locus in the pathogenesis of AOSD.


Assuntos
Aminoácidos/genética , Predisposição Genética para Doença/genética , Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Polimorfismo de Nucleotídeo Único , Doença de Still de Início Tardio/genética , Adulto , Alelos , Povo Asiático/genética , China , Frequência do Gene , Predisposição Genética para Doença/etnologia , Estudo de Associação Genômica Ampla/métodos , Genótipo , Cadeias alfa de HLA-DQ/química , Cadeias HLA-DRB1/química , Haplótipos , Humanos , Desequilíbrio de Ligação , Modelos Moleculares , Conformação Proteica , Doença de Still de Início Tardio/etnologia
16.
Poult Sci ; 98(12): 6333-6339, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31393586

RESUMO

Duck hepatitis A virus (DHAV) is one of the pathogens that cause fatal duck viral hepatitis (DVH) in ducklings, which is an acute and contagious disease with a high mortality rate. Despite a continuing official duck vaccination program, DHAV infection remains a major threat to the duck industry. Considerable changes were observed in the epidemiology of DHAV-1/-3 in China over time. Therefore, comparing the pathogenicity of different DHAV serotypes can provide a theoretical basis for the diagnosis and prevention of DVH. In this study, we systematically investigated the effects of infection with DHAV-1/-3 field strains on clinical signs, gross lesions, histopathological changes, viral RNA detection, enzymatic systems, and metabolite concentrations. The results demonstrated that the major macroscopic and microscopic lesions in ducks infected with DHAV-1/-3 in the liver, brain, spleen, pancreas, and kidneys exhibited no significant differences. After 24 h of infection, DHAV quickly appeared in blood and major organs. Significant changes in clinical chemical markers together with histopathological lesions and viral RNA detection indicated that the liver is the major target organ for both viruses, resulting in impaired of liver integrity and function. In addition, we found that both viruses were able to invade both central and peripheral immune organs. Also lipase plasma activity was substantially affected by DHAV-1/-3, indicating that the integrity and function of the pancreas was compromised. However, there was no significant difference in pathogenicity between DHAV-1 and -3. The results of this study provide new insights into the pathogenesis of DHAV-1/3, two viruses that cause serious depression, metabolic disorders, and immunosuppression.


Assuntos
Patos , Vírus da Hepatite do Pato/fisiologia , Vírus da Hepatite do Pato/patogenicidade , Hepatite Viral Animal/virologia , Infecções por Picornaviridae/veterinária , Doenças das Aves Domésticas/virologia , Animais , Hepatite Viral Animal/patologia , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , RNA Viral/isolamento & purificação , Virulência
17.
FEMS Microbiol Lett ; 366(10)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125044

RESUMO

The bacteria drug resistance is not only associated with the gain of drug resistance gene but also relied on the adaptation of bacterial cells to antibiotics by transcriptional regulation. However, only a few transcription factors that regulate drug resistance have been characterized in mycobacteria. In this study, a TetR family transcriptional factor (OxiR), encoded by Rv0067c in Mycobacterium tuberculosis, was found to be an isoniazid (INH) resistance regulator. Comparing with the wild-type strain, the oxiR overexpressing strain is four times resistant to INH, whereas the oxiR knockout strain is eight times sensitive to INH. However, the rifamycin and ethambutol resistance were not influenced by oxiR. OxiR can bind to self-promoter at a 66 bp imperfect palindromic motifs. Interestingly, OxiR directly binds to INH, and thereby alleviate the self-repression. Furthermore, OxiR negatively regulated an oxidoreductase encoded by Rv0068. And the susceptibility of the Rv0068-overexpressing and oxiR knockout strains to all the three above-mentioned anti-tuberculosis drugs was equivalent, suggesting that the effect of oxiR to INH susceptibility is attributed to the derepression of Rv0068. In conclusion, we showed that OxiR can specifically modulate INH susceptibility by regulating an oxidoreductase encoding gene, both of which have not been associated with drug-resistance previously.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Fatores de Transcrição/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Oxirredutases/genética , Tuberculose/microbiologia
18.
Poult Sci ; 98(9): 3514-3522, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30993349

RESUMO

Fowl adenovirus serotype 4 (FAdV-4) is the causative agent of hydropericardium syndrome. To clarify the effects of FAdV-4 on immune organs in birds, we conducted a detailed examination of dynamic morphology and damage mechanisms in chickens randomly divided into 4 groups (FAdV-4, vaccination, FAdV-4 plus vaccination, and control). FAdV-4 caused the depletion of lymphocytes and subsequent growth impairment in the thymus and bursa. Chickens infected with FAdV-4 and subjected to vaccination experienced greater inhibition of antibody responses to inactivated vaccines against Newcastle disease and avian influenza virus subtype H9 than uninfected and vaccinated chickens. The mechanisms underlying adenovirus-mediated lymphoid organ damage were further investigated via transferase-mediated dUTP nick-end labeling and apoptotic genes transcription analyses. Notably, lymphocytes apoptosis in lymphoid organs and expression of specific gene transcripts was significantly upregulated after infection (P < 0.05). Furthermore, increased expression of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α mRNA was observed (P < 0.05), compared to the control group. Our collective findings suggested that FAdV-4 caused structural and functional damage of immune organs via apoptosis along with induction of a severe inflammatory response.


Assuntos
Infecções por Adenoviridae/veterinária , Galinhas , Adenovirus A das Aves/fisiologia , Tolerância Imunológica/imunologia , Imunidade Humoral/imunologia , Doenças das Aves Domésticas/imunologia , Tropismo Viral/imunologia , Infecções por Adenoviridae/imunologia , Animais , Apoptose , Adenovirus A das Aves/imunologia , Inflamação , Distribuição Aleatória , Sorogrupo
19.
J Fluoresc ; 28(5): 1059-1064, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30066221

RESUMO

A new type of turn-on fluorescent probe CF-AC for the detection of Cys was firstly reported. The probe exhibited an excellent response to Cys with high selectively and sensitivity. In the presence of Cys, two fluorescence emission peaks at 525 nm and 650 nm appeared accompanied by the fluorescence color change from blue to red. Morever, the probe had good biocompatibility and could be successfully used for fluorescence imaging of Cys in MCF-7 cells.


Assuntos
Cumarínicos/química , Cisteína/análise , Fluoresceína/química , Corantes Fluorescentes/química , Cisteína/química , Corantes Fluorescentes/toxicidade , Humanos , Células MCF-7 , Espectrometria de Fluorescência
20.
Aging (Albany NY) ; 10(2): 197-211, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410391

RESUMO

It is generally accepted that significant germ cell loss occurs during the establishment of the primordial follicle pool in most mammalian ovaries around the time of birth. However, the underlying mechanisms responsible for these processes remain largely unknown. In this investigation, we explored the role of autophagy during the establishment of the primordial follicle pool and found that autophagy was active in this process. Our data suggested that 17.5 dpc ovaries treated with rapamycin displayed a delay in germ cell cyst breakdown resulting in more oocytes at day 5 of treatment, while, ovaries that treated with 3-MA showed the opposite effect. We found that rapamycin treatment promoted autophagy and depressed cell apoptosis increasing the number of NOBOX positive oocytes. Furthermore, our results also revealed that epigenetic regulator, Sirt1, plays a role in germ cell loss. An epigenetic inhibitor or RNAi treatment of Sirt1, showed an increased level of H4K16ac and a decreased level of autophagy. Thus, these data indicate that autophagy prevents germ cell over loss during the establishment of primordial follicle pool, and this process may be influenced by Sirt1-invovled epigenetic regulation.


Assuntos
Apoptose/efeitos dos fármacos , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Sirolimo/farmacologia , Animais , Autofagia/efeitos dos fármacos , Western Blotting , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA