Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Diabetes Obes Metab ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853301

RESUMO

AIM: To investigate the associations of metabolic score for insulin resistance (METS-IR) with all-cause and cardiovascular disease (CVD)-specific mortality and the potential mediating role of biological ageing. METHODS: A cohort of 19 204 participants from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 was recruited for this study. Cox regression models, restricted cubic splines, and Kaplan-Meier survival curves were used to determine the relationships of METS-IR with all-cause and CVD-specific mortality. Mediation analyses were performed to explore the possible intermediary role of biological ageing markers, including phenotypic age (PhenoAge) and biological age (BioAge). RESULTS: During a median follow-up of 9.17 years, we observed 2818 deaths, of which 875 were CVD-specific. Multivariable Cox regression showed that the highest METS-IR level (Q4) was associated with increased all-cause (hazard ratio [HR] 1.38, 95% confidence interval [CI] 1.14-1.67) and CVD mortality (HR 1.52, 95% CI 1.10-2.12) compared with the Q1 level. Restricted cubic splines showed a nonlinear relationship between METS-IR and all-cause mortality. Only METS-IR above the threshold (41.02 µg/L) was positively correlated with all-cause death. METS-IR had a linear positive relationship with CVD mortality. In mediation analyses, we found that PhenoAge mediated 51.32% (p < 0.001) and 41.77% (p < 0.001) of the association between METS-IR and all-cause and CVD-specific mortality, respectively. For BioAge, the mediating proportions of PhenoAge were 21.33% (p < 0.001) and 15.88% (p < 0.001), respectively. CONCLUSIONS: This study highlights the detrimental effects of insulin resistance, as measured by METS-IR, on all-cause and CVD mortality. Moreover, it underscores the role of biological ageing in mediating these associations, emphasizing the need for interventions targeting both insulin resistance and ageing processes to mitigate mortality risks in metabolic disorders.

2.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931585

RESUMO

This paper delves into the problem of direct position determination (DPD) for non-Gaussian sources. Existing DPD algorithms are hindered by their high computational complexity from exhaustive grid searches and a disregard for the received signal characteristics by multiple nested arrays (MNAs). To address these issues, the paper proposes a novel DPD algorithm for non-Gaussian sources with MNAs: the Discrete Fourier Transform (DFT) and Taylor compensation algorithm. Initially, the fourth-order cumulant matrix of the received signal is computed, and the vectorizing method is applied. Subsequently, a computationally efficient DPD cost function is proposed by leveraging a normalized DFT matrix to reduce complexity. Finally, first-order Taylor compensation is utilized to enhance the accuracy of the localization results. The superiority of the proposed algorithm is demonstrated through numerical simulation results.

3.
Polymers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891492

RESUMO

Cellulose detectors, as green sensors, are some of the defensive mechanisms of plants which combat environmental stresses. However, extracted cellulose struggles to fulfil these functionalities due to its rigid physical/chemical properties. In this study, a novel cellulose dual-crosslinked framework (CDCF) is proposed. This comprises a denser temporary physical crosslinking bond (hydrogen bonding) and a looser covalent crosslinking bond (N,N-methylenebisacrylamide), which create deformable spaces between the two crosslinking sites. Abundant pH-sensitive carboxyl groups and ultralight, highly porous structures make CDCF response very sensitive in acid/alkaline vapor environments. Hence, a significant shrinkage of CDCF was observed following exposure to vapors. Moreover, a curcumin-incorporated CDCF exhibited dual shape and color changes when exposed to acid/alkaline vapors, demonstrating great potential for the multi-detection of acid/alkaline vapors.

4.
Nat Cell Biol ; 26(7): 1077-1092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926505

RESUMO

Cargo translocation across membranes is a crucial aspect of secretion. In conventional secretion signal peptide-equipped proteins enter the endoplasmic reticulum (ER), whereas a subset of cargo lacking signal peptides translocate into the ER-Golgi intermediate compartment (ERGIC) in a process called unconventional protein secretion (UcPS). The regulatory events at the ERGIC in UcPS are unclear. Here we reveal the involvement of ERGIC-localized small GTPases, Rab1 (Rab1A and Rab1B) and Rab2A, in regulating UcPS cargo transport via TMED10 on the ERGIC. Rab1 enhances TMED10 translocator activity, promoting cargo translocation into the ERGIC, whereas Rab2A, in collaboration with KIF5B, regulates ERGIC compartmentalization, establishing a UcPS-specific compartment. This study highlights the pivotal role of ERGIC-localized Rabs in governing cargo translocation and specifying the ERGIC's function in UcPS.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Transporte Proteico , Retículo Endoplasmático/metabolismo , Humanos , Complexo de Golgi/metabolismo , Células HeLa , Cinesinas/metabolismo , Cinesinas/genética , Células HEK293 , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Proteínas rab1 de Ligação ao GTP/metabolismo , Proteínas rab1 de Ligação ao GTP/genética
5.
Toxics ; 12(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38922074

RESUMO

As an antioxidant and antiozonant, N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is predominantly used in the rubber industry to prevent degradation. However, 6PPD can be ozonated to generate a highly toxic transformation product called N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone), which is toxic to aquatic and terrestrial organisms. Thus, 6PPD and 6PPD-quinone, two emerging contaminants, have attracted extensive attention recently. This review discussed the levels and distribution of 6PPD and 6PPD-quinone in the environment and investigated their toxic effects on a series of organisms. 6PPD and 6PPD-quinone have been widely found in air, water, and dust, while data on soil, sediment, and biota are scarce. 6PPD-quinone can cause teratogenic, developmental, reproductive, neuronal, and genetic toxicity for organisms, at environmentally relevant concentrations. Future research should pay more attention to the bioaccumulation, biomagnification, transformation, and toxic mechanisms of 6PPD and 6PPD-quinone.

6.
Front Pharmacol ; 15: 1388138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863974

RESUMO

Background: In recent years, with the continuous expansion of the application scope of Tranexamic acid (TXA), its usage has surged. Despite numerous studies demonstrating its powerful efficacy, concerns regarding its adverse reactions persist, necessitating comprehensive safety assessment. This study analyzed real-world data from the U.S. Food and Drug Administration to investigate TXA-related adverse events, aiming to elucidate its safety and optimize patient treatment. Methods: The adverse drug event data concerning TXA from 2004 Q1 to 2023 Q3 were collected. Following data standardization, a variety of signal quantification techniques, including the reporting odds ratios, proportional reporting ratios, Bayesian confidence propagation neural network, and empirical Bayes geometric mean were used for analysis. Results: After analyzing 16,692,026 adverse event reports, a total of 1,574 cases of adverse events related to TXA were identified, spanning 23 system organ classes and 307 preferred terms. In addition to the common thrombosis-related Vascular disorders (n = 386) and Cardiac disorders (n = 377), adverse reactions in the Nervous system disorders category were also observed (n = 785), including Myoclonus (n = 70), Status epilepticus (n = 43), and Myoclonic epilepsy (n = 17). Furthermore, this study uncovered adverse effects such as Renal cortical necrosis, Hepatic cyst rupture, and Vascular stent stenosis, which were not previously mentioned in the instructions. Although these occurred infrequently, they exhibited high signal strength. Both Retinal artery occlusion and Vascular stent thrombosis disorder were frequent and exhibited high signal strength as well. It is worth noting that 78 cases of adverse reactions were caused by confusion between incorrect product administration. Conclusion: Our research suggests that TXA has some adverse reactions that are being overlooked. As a cornerstone medication in hemorrhage treatment, it's crucial to monitor, identify, and address these adverse reactions effectively.

7.
Opt Express ; 32(10): 17806-17818, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858952

RESUMO

The deployable segmented space imaging system is an important solution for future ultra-large aperture space optical systems. To achieve the imaging capability of an equivalent aperture monolithic mirror, it requires not only to ensure the positional accuracy in the cophasing process, but also to have extremely high surface accuracy and curvature consistency of the sub-mirrors. However, this work is extremely challenging due to the manufacturing error of the sub-mirrors and the complex space environment. Active optical technology can ensure the surface shape accuracy of the spliced mirror by controlling the mirror surface deformation and compensating for the wavefront aberration. This article compares and analyzes the control ability of two types of deformable mirrors actuated by vertical and parallel methods. We explored the characteristics of the influence function mathematical models of the two types of actuation forms and compared the aberration and curvature correction abilities of them through finite element analysis, summarizing the advantages of the parallel actuation forms. Finally, a 300mm aperture embedded parallel-actuated deformable mirror was designed and manufactured, and relevant experiments were conducted to verify its adjustment ability. By comparing and analyzing the experimental results with the design results, the adjustment ability of the embedded parallel-actuated deformable mirror was verified.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124454, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788500

RESUMO

For species identification analysis, methods based on deep learning are becoming prevalent due to their data-driven and task-oriented nature. The most commonly used convolutional neural network (CNN) model has been well applied in Raman spectra recognition. However, when faced with similar molecules or functional groups, the features of overlapping peaks and weak peaks may not be fully extracted using the CNN model, which can potentially hinder accurate species identification. Based on these practical challenges, the fusion of multi-modal data can effectively meet the comprehensive and accurate analysis of actual samples when compared with single-modal data. In this study, we propose a double-branch CNN model by integrating Raman and image multi-modal data, named SI-DBNet. In addition, we have developed a one-dimensional convolutional neural network combining dilated convolutions and efficient channel attention mechanisms for spectral branching. The effectiveness of the model has been demonstrated using the Grad-CAM method to visualize the key regions concerned by the model. When compared to single-modal and multi-modal classification methods, our SI-DBNet model achieved superior performance with a classification accuracy of 98.8%. The proposed method provided a new reference for species identification based on multi-modal data fusion.

9.
Microb Pathog ; 192: 106709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810766

RESUMO

This study prepared a novel monoclonal antibody (MAb) against mink enteritis parvovirus (MEV) and identified its antigen epitope. The antibody subclass is identified as IgG1, the titers of the MAb is up to 1:1 × 106 and keeps stably after low-temperature storage for 9 months or 11 passages of the MAb cells. The MAb can specifically recognize MEV in the cells in IFA, but not Aleutian disease virus (ADV) or canine distemper virus (CDV). Its antigen epitope was identified as a polypeptide containing 5 key amino acids (378YAFGR382) and the homology in 20 MEV strains, 4 canine parvovirus strains, and 4 feline panleukopenia virus strains was 100%. This study supplies a biological material for developing new methods to detect MEV.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Cinomose Canina , Epitopos , Vírus da Enterite do Vison , Animais , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Vírus da Enterite do Vison/imunologia , Vírus da Cinomose Canina/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vison/imunologia , Imunoglobulina G/imunologia , Vírus da Doença Aleutiana do Vison/imunologia , Parvovirus Canino/imunologia , Vírus da Panleucopenia Felina/imunologia , Mapeamento de Epitopos , Camundongos , Camundongos Endogâmicos BALB C , Enterite Viral do Vison/imunologia
10.
Cell Biosci ; 14(1): 59, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725013

RESUMO

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.

11.
iScience ; 27(6): 109948, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799583

RESUMO

This study aims to establish a scientific foundation for early detection and diagnosis of silicosis by conducting meta-analysis on the role of single biomarkers in independent diagnosis. The combined sensitivity (Sen), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic score, and diagnostic odds ratio (DOR) were 0.84 (95% confidence interval (CI): 0.77-0.90), 0.83 (95% CI: 0.78-0.88), 5.08 (95% CI: 3.92-6.59), 0.19 (95% CI: 0.13-0.27), 3.31 (95% CI: 2.88-3.74) and 27.29 (95% CI: 17.77-41.91), respectively. The area under the curve (AUC) was 0.90 (95% CI: 0.88-0.93). The Fagan plot shows a positive posterior probability of 82% and a negative posterior probability of 15%. This study establishes an academic basis for the swift identification, mitigation, and control of silicosis through scientific approaches. The assessed biomarkers offer precision and dependability in silicosis diagnosis, opening novel paths for early detection and intervention, thereby mitigating the disease burden associated with silicosis.

12.
Pain Res Manag ; 2024: 4564596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633818

RESUMO

Purpose: Two-sample Mendelian randomization (MR) was conducted to assess the causal relationship between angina pectoris and gout. Material and Methods. Based on genome-wide association studies, single nucleotide polymorphisms (SNPs) that were closely associated with gout were selected from the UK Biobank-Neale Lab (ukb-a-107) as genetic instrumental variables. Considering that gout is characterized by elevated blood uric acid levels, SNPs related to blood uric acid levels were screened from BioBank Japan (bbj-a-57) as auxiliary gene instrumental variables. SNPs closely associated with angina pectoris onset were screened from the FINN dataset (finn-b-I9_ANGINA) as outcome variables. Two-sample MR was conducted, with inverse variance weighting (IVW) of the random effects model as the primary result, along with the weighted median method (WME) and the MR-Egger regression method. To further confirm the causal relationship between angina and gout incidence, a meta-analysis was conducted on the IVW results of the ukb-a-107 and bbj-a-57. Results: The odds ratios and 95% confidence intervals of the IVW, WME, and MR-Egger results of ukb-a-107 were (OR = 33.72; 95% CI: 2.07∼550.38), (OR = 57.94; 95% CI: 2.75∼1219.82), and (OR = 96.38; 95% CI: 0.6∼15556.93), respectively. The P values of IVW and WME were 0.014 and 0.014 (both <0.05), respectively, indicating that the development of angina pectoris was significantly associated with the incidence of gout. The odds ratios and 95% confidence intervals of the IVW, WME, and MR-Egger about bbj-a-57 were (OR = 1.20; 95% CI: 1.07∼1.34), (OR = 1.19; 95% CI: 1.02∼1.38), and (OR = 1.30; 95% CI; 1.06∼1.60), respectively. The P values of IVW, WME and MR-Egger were 0.001, 0.027 and 0.017 (all <0.05), respectively, indicating a significant correlation between angina and blood uric acid levels. Scatter plots of ukb-a-107 and bbj-a-57 showed that the causal association estimates of the IVW, MR-Egger, and weighted median methods were similar and that the MR results were accurate. Funnel plots and the MR-Egger intercept of ukb-a-107 and bbj-a-57 showed the absence of horizontal pleiotropy. The leave-out sensitivity analysis results of ukb-a-107 and bbj-a-57 are stable. The meta-analysis of IVW results for ukb-a-107 and bbj-a-57 showed (OR = 1.20; 95% CI: 1.07-1.34, P=0.02), confirming that gout characterized by high blood uric acid levels significantly increases the risk of angina attacks. Conclusions: This MR study found a clear causal relationship between angina pectoris and gout, which increases the risk of angina pectoris.


Assuntos
Estudo de Associação Genômica Ampla , Gota , Humanos , Análise da Randomização Mendeliana , Ácido Úrico , Angina Pectoris
13.
Vet Microbiol ; 293: 110073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579481

RESUMO

African swine fever virus (ASFV) is a large double stranded DNA arbovirus that is highly contagious and seriously endangers domestic and wild pigs. In the past decade, African swine fever (ASF) has spread in many countries in the Caucasus, Russian Federation, Eastern Europe and Asia, causing significant losses to the pig industry. At present, there is a lack of effective vaccine and treatment for ASF. Therefore, the rapid and accurate detection is crucial for ASF prevention and control. In this study, we have developed a portable lateral flow strip (LFS) detection mediated by recombinase polymerase amplification (RPA) and CRISPR/LwCas13a, which is performed at 37 ℃ and visualized by eyes without the need for complex instruments. This RPA-LwCas13a-LFS is based on the ASFV structural protein p17 gene (D117L), with a detection sensitivity up to 2 gene copies. This method is highly specific and has no cross reactivity to 7 other pig viruses. In the detection of two batches of 100 clinical samples, the p17 (D117L) RPA-LwCas13a-LFS had 100% coincidence with conventional quantitative PCR (qPCR). These findings demonstrate the potential of this simple, rapid, sensitive, and specific ASFV detection method for on-site ASFV detection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Sistemas CRISPR-Cas , Animais , Febre Suína Africana/virologia , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Sensibilidade e Especificidade , Suínos , Proteínas Estruturais Virais/análise , Proteínas Estruturais Virais/genética
15.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610405

RESUMO

With the increase in the scale of breeding at modern pastures, the management of dairy cows has become much more challenging, and individual recognition is the key to the implementation of precision farming. Based on the need for low-cost and accurate herd management and for non-stressful and non-invasive individual recognition, we propose a vision-based automatic recognition method for dairy cow ear tags. Firstly, for the detection of cow ear tags, the lightweight Small-YOLOV5s is proposed, and then a differentiable binarization network (DBNet) combined with a convolutional recurrent neural network (CRNN) is used to achieve the recognition of the numbers on ear tags. The experimental results demonstrated notable improvements: Compared to those of YOLOV5s, Small-YOLOV5s enhanced recall by 1.5%, increased the mean average precision by 0.9%, reduced the number of model parameters by 5,447,802, and enhanced the average prediction speed for a single image by 0.5 ms. The final accuracy of the ear tag number recognition was an impressive 92.1%. Moreover, this study introduces two standardized experimental datasets specifically designed for the ear tag detection and recognition of dairy cows. These datasets will be made freely available to researchers in the global dairy cattle community with the intention of fostering intelligent advancements in the breeding industry.


Assuntos
Agricultura , Reconhecimento Psicológico , Animais , Feminino , Bovinos , Fazendas , Indústrias , Inteligência
16.
Microb Pathog ; 190: 106629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522492

RESUMO

Blastocystis sp. is a protozoan parasite that infects the intestines of humans and animals, causing chronic diseases such as skin rashes, abdominal pain, and irritable bowel syndrome. A survey was conducted to determine the prevalence and genetic diversity of Blastocystis sp. infection in cattle, in Hebei Province, China. 2746 cattle fecal samples were collected from 11 cities in Hebei Province and analyzed using polymerase chain reaction targeting the Blastocystis sp. barcoding gene. MEGA, PhyloSuite, and PopART were used to analyze the subtype, sequence signature, pairwise genetic distance, and genetic diversity indices. The results showed that the Blastocystis sp. detection rate was 12.60% (346/2746). The infection rate in different herds was affected by region, age, breeding mode, and variety; that is, the infection rates in areas of southern Hebei, cattle under one year old, intensive raising, and dairy cattle were higher than the infection rates in northern Hebei, cattle over one year old, scatter feeding, and beef cattle. Seven Blastocystis subtypes were identified, namely, ST1, ST2, ST5, ST10, ST14, ST21, and ST26; ST10 was the dominant subtype, and ST14 was the second most common subtype. A total of 374 polymorphic and conserved sites were obtained, including 273 invariable (monomorphic) sites and 101 variable (polymorphic) sites, accounting for 27.01% of all nucleotides. The nucleotide diversity index (Pi) was 0.07749, and the haplotype (gene) diversity index (Hd) was 0.946. This study provides the first comprehensive information on the epidemiological situation of Blastocystis sp. infection in cattle from Hebei Province, China, and revealed rich genetic diversity of Blastocystis sp.


Assuntos
Infecções por Blastocystis , Blastocystis , Doenças dos Bovinos , Fezes , Variação Genética , Filogenia , Animais , Bovinos , Blastocystis/genética , Blastocystis/classificação , Blastocystis/isolamento & purificação , China/epidemiologia , Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/parasitologia , Infecções por Blastocystis/veterinária , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/epidemiologia , Fezes/parasitologia , Prevalência , DNA de Protozoário/genética , Genótipo , Reação em Cadeia da Polimerase
17.
Thromb Haemost ; 124(8): 709-720, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38325400

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) and thrombosis are linked, but the biomolecular mechanism is unclear. We aimed to investigate the causal relationship between COVID-19 and thrombotic biomarkers. METHODS: We used two-sample Mendelian randomization (MR) to assess the effect of COVID-19 on 20 thrombotic biomarkers. We estimated causality using inverse variance weighting with multiplicative random effect, and performed sensitivity analysis using weighted median, MR-Egger regression and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) methods. All the results were examined by false discovery rate (FDR) with the Benjamin and Hochberg method for this correction to minimize false positives. We used R language for the analysis. RESULTS: All COVID-19 classes showed lower levels of tissue factor pathway inhibitor (TFPI) and interleukin-1 receptor type 1 (IL-1R1). COVID-19 significantly reduced TFPI (odds ratio [OR] = 0.639, 95% confidence interval [CI]: 0.435-0.938) and IL-1R1 (OR = 0.603, 95% CI = 0.417-0.872), nearly doubling the odds. We also found that COVID-19 lowered multiple coagulation factor deficiency protein 2 and increased C-C motif chemokine 3. Hospitalized COVID-19 cases had less plasminogen activator, tissue type (tPA) and P-selectin glycoprotein ligand 1 (PSGL-1), while severe cases had higher mean platelet volume (MPV) and lower platelet count. These changes in TFPI, tPA, IL-1R1, MPV, and platelet count suggested a higher risk of thrombosis. Decreased PSGL-1 indicated a lower risk of thrombosis. CONCLUSION: TFPI, IL-1R, and seven other indicators provide causal clues of the pathogenesis of COVID-19 and thrombosis. This study demonstrated that COVID-19 causally influences thrombosis at the biomolecular level.


Assuntos
Biomarcadores , COVID-19 , Lipoproteínas , Análise da Randomização Mendeliana , Trombose , Humanos , COVID-19/complicações , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , Trombose/sangue , Trombose/epidemiologia , Trombose/etiologia , Biomarcadores/sangue , Lipoproteínas/sangue , SARS-CoV-2 , Fatores de Risco
18.
Cancer Rep (Hoboken) ; 7(2): e1933, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38321787

RESUMO

BACKGROUND: Retinoblastoma (RB) is the most common prevalent intraocular malignancy among infants and children, particularly in underdeveloped countries. With advancements in genomics and transcriptomics, noncoding RNAs have been increasingly utilized to investigate the molecular pathology of diverse diseases. AIMS: This study aims to establish the competing endogenous RNAs network associated with RB, analyse the function of mRNAs and lncRNAs, and finds the relevant regulatory network. METHODS AND RESULTS: This study establishes a network of competing endogenous RNAs by Spearman correlation analysis and prediction based on RB patients and healthy children. Enrichment analyzes based on Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes are conducted to analyze the potential biological functions of lncRNA and mRNA networks. Weighted gene co-expression network analysis (WGCNA) is employed to identify gene cluster modules exhibiting the strongest correlation with RB. The results indicate a significant correlation between the lncRNA MIR17HG (R = .73, p = .02) and the RB phenotype. ceRNA networks reveal downstream miRNAs (hsa-mir-425-5p and hsa-mir455-5p) and mRNAs (MDM2, IPO11, and ITGA1) associated with MIR17Hg. As an inhibitor of the p53 signaling pathway, MDM2 can suppress the development of RB. CONCLUSION: In conclusion, lncRNAs play a role in RB, and the MIR17HG/hsa-mir-425-5p/MDM2 pathway may contribute to RB development by inhibiting the p53 signaling pathway.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Lactente , beta Carioferinas , Biologia Computacional/métodos , MicroRNAs/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Proteína Supressora de Tumor p53
19.
Opt Lett ; 49(3): 434-437, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300025

RESUMO

Single-frequency fiber lasers (SFFLs), 1083 nm, have been extensively applied in 4He optical pumping magnetometers (OPMs) for magnetic field detection. However, the sensitivity and accuracy of OPMs are constrained by the frequency stability of SFFLs. Focusing on this concern, the frequency-stabilized performance of the 1083 nm SFFLs is successfully improved by externally tailoring the laser linewidth to match the spectral width of the error signal in saturated absorption spectroscopy. Thereinto, a high-intensity error signal of saturated absorption is generated as a large number of 4He atoms with a wide range of velocities interacting with the 1083 nm laser. Consequently, the root mean square value of the fluctuating frequency after locking is effectively decreased from 24.6 to 13.6 kHz, which achieves a performance improvement of 44.7%. Such a strategy can provide a technical underpinning for effectuating an absolute frequency stabilization with higher precision based on atomic and molecular absorption spectroscopy techniques.

20.
Intractable Rare Dis Res ; 13(1): 69-72, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404734

RESUMO

Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive primary immunodeficiency disorder. Mutations in the WAS gene are considered to be the primary cause of WAS. In this work, we report a boy who presented with intracranial hemorrhage (ICH) as an initial symptom and detects a novel pathogenic synonymous mutation in his WAS gene. His mother was a carrier of the mutant gene. The mutation, located at position c.273 (c.273 G>A) in exon 2, is a synonym mutation and predicted to affect protein expression by disrupting gene splicing. This study summarizes the diagnosis and treatment process of the patient and expands the genetic spectrum of WAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA