Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Nanotechnol ; 16(10): 1057-1067, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625723

RESUMO

Biological systems exhibit a range of complex functions at the micro- and nanoscales under non-equilibrium conditions (for example, transportation and motility, temporal control, information processing and so on). Chemists also employ out-of-equilibrium systems, for example in kinetic selection during catalysis, self-replication, dissipative self-assembly and synthetic molecular machinery, and in the form of chemical oscillators. Key to non-equilibrium behaviour are the mechanisms through which systems are able to extract energy from the chemical reactants ('fuel') that drive such processes. In this Perspective we relate different examples of such powering mechanisms using a common conceptual framework. We discuss how reaction cycles can be coupled to other dynamic processes through positive (acceleration) or negative (inhibition) catalysis to provide the thermodynamic impetus for diverse non-equilibrium behaviour, in effect acting as a 'chemical engine'. We explore the way in which the energy released from reaction cycles is harnessed through kinetic selection in a series of what have sometimes been considered somewhat disparate fields (systems chemistry, molecular machinery, dissipative assembly and chemical oscillators), highlight common mechanistic principles and the potential for the synchronization of chemical reaction cycles, and identify future challenges for the invention and application of non-equilibrium systems. Explicit recognition of the use of fuelling reactions to power structural change in catalysts may stimulate the investigation of known catalytic cycles as potential elements for chemical engines, a currently unexplored area of catalysis research.

2.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34681240

RESUMO

Nucleic acids are promising for a variety of therapies, such as cancer therapy and the gene therapy of genetic disorders. The therapeutic efficacy of nucleic acids is reliant on the ability of their efficient delivery to the cytosol of the target cells. Amino lipids have been developed to aid in the cytosolic delivery of nucleic acids. This work reports a new and efficient synthetic pathway for the lipid carrier, (1-aminoethyl) iminobis [N-(oleicylcysteinyl-1-amino-ethyl)propionamide] (ECO). The previous synthesis of the ECO was inefficient and presented poor product quality control. A solution-phase synthesis of the ECO was explored, and each intermediate product was characterized with better quality control. The ECO was synthesized with a relatively high yield and high purity. The formulations of the ECO nanoparticles were made with siRNA, miRNA, or plasmid DNA, and characterized. The transfection efficiency of the nanoparticles was evaluated in vitro over a range of N/P ratios. The nanoparticles were consistent in size with previous formulations and had primarily a positive zeta potential. The ECO/siLuc nanoparticles resulted in potent luciferase silencing with minimal cytotoxicity. The ECO/miR-200c nanoparticles mediated the efficient delivery of miR-200c into the target cells. The ECO/pCMV-GFP nanoparticles resulted in substantial GFP expression upon transfection. These results demonstrate that the solution-phase synthetic pathway produced pure ECO for the efficient intracellular delivery of nucleic acids without size limitation.

3.
Pharm Res ; 38(8): 1405-1418, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34389916

RESUMO

PURPOSE: To investigate the effectiveness of targeted ECO/miR-200c in modulating tumor microenvironment and treating triple negative breast cancer (TNBC) using non-invasive magnetic resonance molecular imaging (MRMI) of extradomain B fibronectin (EDB-FN) with a targeted MRI contrast agent. METHODS: MDA-MB-231 and Hs578T TNBC cells were transfected with RGD-PEG-ECO/miR-200c. Invasive and migratory potential was evaluated using transwell, scratch wound, and spheroid formation assays. Athymic nude mice bearing orthotopic MDA-MB-231 and Hs578T xenografts were treated with weekly i.v. injection of RGD-PEG-ECO/miR-200c nanoparticles at 1.0 mg/kg/week RNA for 6 weeks. MRMI of EDB-FN was performed using a targeted contrast agent MT218 [ZD2-N3-Gd(DO3A)] on a 3 T MRS 3000 scanner. T1-weighted images were acquired following intravenous injection of MT218 at dose of 0.1 mmol/kg using a fast spin echo axial sequence with respiratory gating. RESULTS: Systemic administration of RGD-PEG-ECO/miR-200c nanoparticles in mice bearing orthotopic TNBC xenografts significantly suppressed tumor progression without toxic side-effects. MRMI with MT218 revealed that the treatment significantly suppressed tumor proliferation as compared to the control. MRMI also showed that the miR-200c treatment altered tumor microenvironment by reducing EDB-FN expression, as evidenced by decreased contrast enhancement in both MDA-MB-231 and Hs578T tumors. The reduction of EDB-FN was confirmed by immunohistochemistry. CONCLUSIONS: Targeted delivery of miR-200c with RGD-PEG-ECO/miR-200c nanoparticles effectively modulates tumor microenvironment and suppresses TNBC proliferation in animal models. MRMI of tumor EDB-FN expression is effective to non-invasively monitor tumor response and therapeutic efficacy of RGD-PEG-ECO/miR-200c nanoparticles in TNBC.


Assuntos
MicroRNAs/administração & dosagem , Imagem Molecular/métodos , Nanopartículas/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Feminino , Fibronectinas/análise , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , MicroRNAs/análise , Invasividade Neoplásica , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Angew Chem Int Ed Engl ; 60(2): 566-597, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32212308

RESUMO

Owing to their significant physiological functions, especially as selective relays for translocation of physiological relevant species through cellular membranes, natural ion channels play important role in the living organisms. During the last decades, the field of self-assembled ion channels has been continuously developed. Convergent multidimensional self-assembly strategies have been used for the synthesis of unimolecular channels or non-covalent self-organized channels, designed to mimic natural ion channel proteins and for which a rich array of interconverting or adaptive channel conductance states can be observed. In this review, we give an overview on the development of various self-assembled artificial channels in a bottom-up approach, especially their design, self-assembly behaviour, transport activity in lipid bilayer membranes, mechanism of transport and comparison with natural ion channels. Finally, we discuss their applications, the potential challenges facing in this field as well as future development and perspectives.


Assuntos
Materiais Biomiméticos/química , Canais Iônicos/química , Materiais Biomiméticos/metabolismo , Calixarenos/química , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Compostos Macrocíclicos/química , Estruturas Metalorgânicas/química
5.
Cancers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158243

RESUMO

Radiation therapy is a mainstay in the standard of care for glioblastoma (GBM), thus inhibiting the DNA damage response (DDR) is a major strategy to improve radiation response and therapeutic outcomes. Small interfering RNA (siRNA) therapy holds immeasurable potential for the treatment of GBM, however delivery of the siRNA payload remains the largest obstacle for clinical implementation. Here we demonstrate the effectiveness of the novel nanomaterial, ECO (1-aminoethylimino[bis(N-oleoylcysteinylaminoethyl) propionamide]), to deliver siRNA targeting DDR proteins ataxia telangiectasia mutated and DNA-dependent protein kinase (DNApk-cs) for the radiosensitzation of GBM in vitro and in vivo. ECO nanoparticles (NPs) were shown to efficiently deliver siRNA and silence target protein expression in glioma (U251) and glioma stem cell lines (NSC11, GBMJ1). Importantly, ECO NPs displayed no cytotoxicity and minimal silencing of genes in normal astrocytes. Treatment with ECO/siRNA NPs and radiation resulted in the prolonged presence of γH2AX foci, indicators of DNA damage, and increased radiosensitivity in all tumor cell lines. In vivo, intratumoral injection of ECO/siDNApk-cs NPs with radiation resulted in a significant increase in survival compared with injection of NPs alone. These data suggest the ECO nanomaterial can effectively deliver siRNA to more selectively target and radiosensitize tumor cells to improve therapeutic outcomes in GBM.

6.
Front Chem ; 7: 611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552227

RESUMO

Gramicidin A, gA is a natural protein channel with a well-established, simple structure, and function: cations and water are transported together along the channel. Importantly, the dipolar orientation of water molecules within the pore can influence the ionic translocation. The need for simple artificial systems biomimicking the gA functions has been desired and they were until last decade unknown. Several interesting papers highlighted in this minireview have been published and supramolecular systems described here can be considered as primitive gA mimics. The dynamics of ions/water and protons confined within gA channels is difficult to structurally analyze and simpler artificial systems designed at the atomic level would have a crucial relevance for understanding such translocation scenarios at the molecular level. The directional ordering of confined water-wires or ions, as observed inside primitive gA channels is reminiscent with specific interactions between water and the natural gA. This dipolar orientation may induce specific dielectric properties which most probably influence the biological recognition at bio-interfaces or translocation of charge species along artificial channel pathways.

7.
Nucleic Acid Ther ; 29(4): 195-207, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31140918

RESUMO

Nanoparticle based siRNA formulations often suffer from aggregation and loss of function during storage. We in this study report a frozen targeted RGD-polyethylene glycol (PEG)-ECO/siß3 nanoparticle formulation with a prolonged shelf life and preserved nanoparticle functionality. The targeted RGD-PEG-ECO/siß3 nanoparticles are formed by step-wised self-assembly of RGD-PEG-maleimide, ECO, and siRNA. The nanoparticles have a diameter of 224.5 ± 9.41 nm and a zeta potential to 45.96 ± 3.67 mV in water and a size of 234.34 ± 3.01 nm and a near neutral zeta potential in saline solution. The addition of sucrose does not affect their size and zeta potential and substantially preserves the integrity and biological activities of frozen and lyophilized formulations of the targeted nanoparticles. The frozen formulation with as low as 5% sucrose retains nanoparticle integrity (90% siRNA encapsulation), size distribution (polydispersity index [PDI] ≤20%), and functionality (at least 75% silencing efficiency) at -80°C for at least 1 year. The frozen RGD-PEG-ECO/siß3 nanoparticle formulation exhibits excellent biocompatibility, with no adverse effects on hemocompatibility and minimal immunogenicity. As RNAi holds the promise in treating the previously untreatable diseases, the frozen nanoparticle formulation with the low sucrose concentration has the potential to be a delivery platform for clinical translation of RNAi therapeutics.


Assuntos
Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , RNA Interferente Pequeno/farmacologia , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Interferência de RNA , RNA de Cadeia Dupla/efeitos dos fármacos , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/química
8.
Bioconjug Chem ; 30(3): 907-919, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30739442

RESUMO

Long noncoding RNAs (lncRNAs), by virtue of their versatility and multilevel gene regulation, have emerged as attractive pharmacological targets for treating heterogeneous and complex malignancies like triple-negative breast cancer (TNBC). Despite multiple studies on lncRNA functions in tumor pathology, systemic targeting of these "undruggable" macromolecules with conventional approaches remains a challenge. Here, we demonstrate effective TNBC therapy by nanoparticle-mediated RNAi of the oncogenic lncRNA DANCR, which is significantly overexpressed in TNBC. Tumor-targeting RGD-PEG-ECO/siDANCR nanoparticles were formulated via self-assembly of multifunctional amino lipid ECO, cyclic RGD peptide-PEG, and siDANCR for systemic delivery. MDA-MB-231 and BT549 cells treated with the therapeutic RGD-PEG-ECO/siDANCR nanoparticles exhibited 80-90% knockdown in the expression of DANCR for up to 7 days, indicating efficient intracellular siRNA delivery and sustained target silencing. The RGD-PEG-ECO/siDANCR nanoparticles mediated excellent in vitro therapeutic efficacy, reflected by significant reduction in the invasion, migration, survival, tumor spheroid formation, and proliferation of the TNBC cell lines. At the molecular level, functional ablation of DANCR dynamically impacted the oncogenic nexus by downregulating PRC2-mediated H3K27-trimethylation and Wnt/EMT signaling, and altering the phosphorylation profiles of several kinases in the TNBC cells. Furthermore, systemic administration of the RGD-PEG-ECO/siDANCR nanoparticles at a dose of 1 mg/kg siRNA in nude mice bearing TNBC xenografts resulted in robust suppression of TNBC progression with no overt toxic side-effects, underscoring the efficacy and safety of the nanoparticle therapy. These results demonstrate that nanoparticle-mediated modulation of onco-lncRNAs and their molecular targets is a promising approach for developing curative therapies for TNBC and other cancers.


Assuntos
Terapia Genética , Nanopartículas , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno/administração & dosagem , Neoplasias de Mama Triplo Negativas/terapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , RNA Interferente Pequeno/química , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioconjug Chem ; 30(3): 667-678, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30582790

RESUMO

CRISPR/Cas9 system is a promising approach for gene editing in gene therapy. Effective gene editing requires safe and efficient delivery of CRISPR/Cas9 system in target cells. Several new multifunctional pH-sensitive amino lipids were designed and synthesized with modification of the amino head groups for intracellular delivery of CRISPR/Cas9 system. These multifunctional pH-sensitive amino lipids exhibited structurally dependent formulation of stable nanoparticles with the DNA plasmids of CRISPR/Cas9 system with the sizes ranging from 100 to 200 nm. The amino lipid plasmid DNA nanoparticles showed pH-sensitive hemolysis with minimal hemolytic activity at pH 7.4 and increased hemolysis at acidic pH (pH = 5.5, 6.5). The nanoparticles exhibited low cytotoxicity at an N/P ratio of 10. Expression of both Cas9 and sgRNA of the CRISPR/Cas9 system was in the range from 4.4% to 33%, dependent on the lipid structure in NIH3T3-GFP cells. The amino lipids that formed stable nanoparticles with high expression of both Cas9 and sgRNA mediated high gene editing efficiency. ECO and iECO mediated more efficient gene editing than other tested lipids. ECO mediated up to 50% GFP suppression based on observations with confocal microscopy and nearly 80% reduction of GFP mRNA based on RT-PCR measurement in NIH3T3-GFP cells. The multifunctional pH-sensitive amino lipids have the potential for efficient intracellular delivery of CRISPR/Cas9 for effective gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Concentração de Íons de Hidrogênio , Lipídeos/química , Animais , DNA/química , Proteínas de Fluorescência Verde/genética , Hemólise/efeitos dos fármacos , Lipídeos/síntese química , Lipídeos/farmacologia , Camundongos , Células NIH 3T3 , Plasmídeos
10.
Chem Rev ; 118(20): 10049-10293, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30260217

RESUMO

The hallmark of nucleophilic phosphine catalysis is the initial nucleophilic addition of a phosphine to an electrophilic starting material, producing a reactive zwitterionic intermediate, generally under mild conditions. In this Review, we classify nucleophilic phosphine catalysis reactions in terms of their electrophilic components. In the majority of cases, these electrophiles possess carbon-carbon multiple bonds: alkenes (section 2), allenes (section 3), alkynes (section 4), and Morita-Baylis-Hillman (MBH) alcohol derivatives (MBHADs; section 5). Within each of these sections, the reactions are compiled based on the nature of the second starting material-nucleophiles, dinucleophiles, electrophiles, and electrophile-nucleophiles. Nucleophilic phosphine catalysis reactions that occur via the initial addition to starting materials that do not possess carbon-carbon multiple bonds are collated in section 6. Although not catalytic in the phosphine, the formation of ylides through the nucleophilic addition of phosphines to carbon-carbon multiple bond-containing compounds is intimately related to the catalysis and is discussed in section 7. Finally, section 8 compiles miscellaneous topics, including annulations of the Hüisgen zwitterion, phosphine-mediated reductions, iminophosphorane organocatalysis, and catalytic variants of classical phosphine oxide-generating reactions.


Assuntos
Fosfinas/química , Álcoois/química , Alcenos/química , Alcinos/química , Catálise , Estrutura Molecular
11.
Faraday Discuss ; 209(0): 113-124, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30063059

RESUMO

A series of mono- and di-ureidoethylimidazole derivatives were tested as self-assembled supramolecular channels for water transport. Several structural behaviours were compared in order to gain insight on the structure-water transport activity relationship. The three main features that are critical to tailor artificial water channel building blocks are: (i) the selectivity of the hydrophilic head, (ii) the H-bonding scaffold favouring the directional self-assembly, and (iii) the lipophilic tail for the compatibility with the hydrophobic environment of the lipid bilayer. The designed compounds bear one or two imidazole heads, one or two urea moieties, and different lipophilic tails. Water transport experiments were performed in order to assess the critical parameters. For that, large unilamellar vesicles (LUV) were fabricated using a mixture of phosphatidylcholine, phosphatidylserine and cholesterol. The bilayer of the LUV constituted a membrane between an intra and an extra vesicular medium. The artificial water channel candidates are put in the presence of this membrane to improve its water permeability. The permeation of elements other than water is ideally maintained to a minimum in order to achieve selective water filtration. In this study the effect of additional urea moieties, as well as its absence, was evidenced as detrimental for the permeation and the influence of the tail was also investigated.

12.
Org Lett ; 19(6): 1438-1441, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28262027

RESUMO

An artificial selective K+ channel is formed from the supramolecular organization on bis(benzo-15-crown-5- ether-ureido)-pillar[5]arene compound. This channel achieves a selectivity of SK+/Na+ = 5 for an initial transport rate of kK+ = 3.2 × 10-3 s-1. The cation-file diffusion occurs via selective macrocyclic-filters anchored on inactive supporting pillar[5]arene relays. The sandwich-type binding geometry of the K+ cation by two 15-crown-5 moieties sites is a key feature influencing channel efficiency.

14.
Org Lett ; 18(21): 5644-5647, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27767321

RESUMO

With the use of a commercially available chiral phosphine as the catalyst, the first catalytic enantioselective [4 + 3] annulation of allenoates with C,N-cyclic azomethine imines is developed. The reaction works efficiently under mild reaction conditions to afford seven-membered ring-fused quinazoline-based tricyclic heterocycles in high yields with good to excellent diastereo- and enantioselectivities.

15.
Org Lett ; 18(14): 3418-21, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27378106

RESUMO

Phosphine-catalyzed [2 + 4] annulation of allenoates with thiazolone-derived alkenes has been achieved under mild conditions, giving biologically important 6,7-dihydro-5H-pyrano[2,3-d]thiazole derivatives in high to excellent yields. With the use of Kwon's phosphine as the chiral catalyst, optically active products were obtained in good yields with excellent enantioselectivities.

16.
J Org Chem ; 81(17): 7597-603, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27467599

RESUMO

[4 + 3] cycloaddition of phthalazinium dicyanomethanides with in situ formed azoalkenes was achieved, providing an access to various 1,2,4-triazepine derivatives in moderate to excellent yields.

17.
Org Lett ; 18(6): 1302-5, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26937706

RESUMO

An enantioselective synthesis of pharmaceutically important spirobarbiturates has been achieved via spirocyclic chiral phosphine-catalyzed asymmetric [4 + 2] annulation of barbiturate-derived alkenes with allenoates. With the use of this tool, various spirobarbiturate-cyclohexenes are obtained in good to excellent yields with excellent diastereo- and enantioselectivities. A wide range of α-substituted allenoates and barbiturate-derived alkenes were tolerated.


Assuntos
Alcenos/química , Barbitúricos/síntese química , Cicloexenos/síntese química , Fosfinas/química , Barbitúricos/química , Catálise , Cicloexenos/química , Estrutura Molecular , Compostos de Espiro/síntese química , Estereoisomerismo
18.
Chemistry ; 22(6): 2158-2164, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26743009

RESUMO

The natural KcsA K+ channel, one of the best-characterized biological pore structures, conducts K+ cations at high rates while excluding Na+ cations. The KcsA K+ channel is of primordial inspiration for the design of artificial channels. Important progress in improving conduction activity and K+ /Na+ selectivity has been achieved with artificial ion-channel systems. However, simple artificial systems exhibiting K+ /Na+ selectivity and mimicking the biofunctions of the KcsA K+ channel are unknown. Herein, an artificial ion channel formed by H-bonded stacks of squalyl crown ethers, in which K+ conduction is highly preferred to Na+ conduction, is reported. The K+ -channel behavior is interpreted as arising from discreet stacks of dimers resulting in the formation of oligomeric channels, in which transport of cations occurs through macrocycles mixed with dimeric carriers undergoing dynamic exchange within the bilayer membrane. The present highly K+ -selective macrocyclic channel can be regarded as a biomimetic alternative to the KcsA channel.

19.
Angew Chem Int Ed Engl ; 54(48): 14473-7, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26437848

RESUMO

The bacterial KcsA channel conducts K(+) cations at high rates while excluding Na(+) cations. Herein, we report an artificial ion-channel formed by H-bonded stacks of crown-ethers, where K(+) cation conduction is highly preferred to Na(+) cations. The macrocycles aligned along the central pore surround the K(+) cations in a similar manner to the water around the hydrated cation, compensating for the energetic cost of their dehydration. In contrast, the Na(+) cation does not fit the macrocyclic binding sites, so its dehydration is not completely compensated. The present highly K(+)-selective macrocyclic channel may be regarded as a biomimetic of the KcsA channel.


Assuntos
Colesterol/química , Éteres de Coroa/química , Canais de Potássio/química
20.
J Phys Chem B ; 119(1): 301-6, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25516141

RESUMO

Anion receptors based on an 8-thiourea substituted quinoline with pentafluorinated (1a) or nonfluorinated (1b) biarylamide groups in the 2-position show similar binding of halide anions with somewhat higher association constants for the more acidic fluorinated derivative. Surprisingly, binding affinities for the halides in the case of the nonfluorinated 1b are similar in nonpolar chloroform or polar DMSO as solvent. Thorough thermodynamic investigations based on NMR van't Hoff analysis show that anion binding in chloroform is mainly enthalpically driven. In DMSO, entropy is the driving force for the binding of the ions with replacement of attached solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA