Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2401251121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136993

RESUMO

Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle. These cytokines also induce activation of ß1 integrins detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is increased in the smooth muscle of patients with asthma compared to nonsmokers without lung disease, suggesting a disease-relevant role for integrin activation in smooth muscle. Indeed, integrin activation induced by the ß1-activating antibody TS2/16, the divalent cation manganese, or the synthetic peptide ß1-CHAMP that forces an extended-open integrin conformation dramatically enhances force transmission in smooth muscle cells and airway rings even in the absence of cytokines. We demonstrate that cytokine-induced activation of ß1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 at focal adhesions, resulting in ß1 integrin activation. Taken together, these data identify a pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant ß1 integrin activation in adherent smooth muscle and help to explain the exaggerated force transmission that characterizes chronic airway diseases such as asthma.


Assuntos
Asma , Integrina beta1 , Interleucina-13 , Interleucina-17 , Músculo Liso , NF-kappa B , Quinases Associadas a rho , Humanos , Integrina beta1/metabolismo , Interleucina-17/metabolismo , Músculo Liso/metabolismo , NF-kappa B/metabolismo , Quinases Associadas a rho/metabolismo , Interleucina-13/metabolismo , Asma/metabolismo , Transdução de Sinais , Adesão Celular , Miócitos de Músculo Liso/metabolismo , Animais
2.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746410

RESUMO

Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although G-protein coupled receptor-mediated integrin activation has been extensively studied in non-adherent migratory cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent stationary cells such as airway smooth muscle. Here we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families respectively, to enhance adhesion of muscle to the matrix. These cytokines also induce activation of ß1 integrins as detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is significantly increased in the smooth muscle of patients with asthma compared to healthy controls, suggesting a disease-relevant role for aberrant integrin activation. Indeed, we find integrin activation induced by a ß1 activating antibody, the divalent cation manganese, or the synthetic peptide ß1-CHAMP, dramatically enhances force transmission in collagen gels, mouse tracheal rings, and human bronchial rings even in the absence of cytokines. We further demonstrate that cytokine-induced activation of ß1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 resulting in ß1 integrin activation. Taken together, these data identify a previously unknown pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant ß1 integrin activation in adherent smooth muscle and help explain the exaggerated force transmission that characterizes chronic airways diseases such as asthma.

3.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33956668

RESUMO

Severe asthma remains challenging to manage and has limited treatment options. We have previously shown that targeting smooth muscle integrin α5ß1 interaction with fibronectin can mitigate the effects of airway hyperresponsiveness by impairing force transmission. In this study, we show that another member of the integrin superfamily, integrin α2ß1, is present in airway smooth muscle and capable of regulating force transmission via cellular tethering to the matrix protein collagen I and, to a lesser degree, laminin-111. The addition of an inhibitor of integrin α2ß1 impaired IL-13-enhanced contraction in mouse tracheal rings and human bronchial rings and abrogated the exaggerated bronchoconstriction induced by allergen sensitization and challenge. We confirmed that this effect was not due to alterations in classic intracellular myosin light chain phosphorylation regulating muscle shortening. Although IL-13 did not affect surface expression of α2ß1, it did increase α2ß1-mediated adhesion and the level of expression of an activation-specific epitope on the ß1 subunit. We developed a method to simultaneously quantify airway narrowing and muscle shortening using 2-photon microscopy and demonstrated that inhibition of α2ß1 mitigated IL-13-enhanced airway narrowing without altering muscle shortening by impairing the tethering of muscle to the surrounding matrix. Our data identified cell matrix tethering as an attractive therapeutic target to mitigate the severity of airway contraction in asthma.


Assuntos
Asma/metabolismo , Colágeno Tipo I/metabolismo , Integrina alfa2beta1/metabolismo , Traqueia/metabolismo , Animais , Asma/patologia , Linhagem Celular , Constrição Patológica/metabolismo , Humanos , Interleucina-13/metabolismo , Camundongos
4.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515353

RESUMO

GPCRs are increasingly recognized to initiate signaling via heterotrimeric G proteins as they move through the endocytic network, but little is known about how relevant G protein effectors are localized. Here we report selective trafficking of adenylyl cyclase type 9 (AC9) from the plasma membrane to endosomes while adenylyl cyclase type 1 (AC1) remains in the plasma membrane, and stimulation of AC9 trafficking by ligand-induced activation of Gs-coupled GPCRs. AC9 transits a similar, dynamin-dependent early endocytic pathway as ligand-activated GPCRs. However, unlike GPCR traffic control which requires ß-arrestin but not Gs, AC9 traffic control requires Gs but not ß-arrestin. We also show that AC9, but not AC1, mediates cAMP production stimulated by endogenous receptor activation in endosomes. These results reveal dynamic and isoform-specific trafficking of adenylyl cyclase in the endocytic network, and a discrete role of a heterotrimeric G protein in regulating the subcellular distribution of a relevant effector.


Cells sense changes in their chemical environment using proteins called receptors. These proteins often sit on the cell surface, detecting molecules outside the cell and relaying messages across the membrane to the cell interior. The largest family of receptors is formed of 'G protein-coupled receptors' (or GPCRs for short), so named because they relay messages through so-called G proteins, which then send information into the cell by interacting with other proteins called effectors. Next, the receptors leave the cell surface, travelling into the cell in compartments called endosomes. Researchers used to think that this switched the receptors off, stopping the signaling process, but it is now clear that this is not the case. Some receptors continue to signal from inside the cell, though the details of how this works are unclear. For signals to pass from a GPCR to a G protein to an effector, all three proteins need to be in the same place. This is certainly happening at the cell surface, but whether all three types of proteins come together inside endosomes is less clear. One way to find out is to look closely at the location of effector proteins when GPCRs are receiving signals. One well-studied effector of GPCR signaling is called adenylyl cyclase, a protein that makes a signal molecule called cAMP. Some G proteins switch adenylyl cyclase on, increasing cAMP production, while others switch it off. To find out how GPCRs send signals from inside endosomes, Lazar et al tracked adenylyl cyclase proteins inside human cells. This revealed that a type of adenylyl cyclase, known as adenylyl cyclase 9, follows receptors as they travel into the cell. Under the influence of active G proteins, activated adenylyl cyclase 9 left the cell surface and entered the endosomes. Once inside the cell, adenylyl cyclase 9 generated the signal molecule cAMP, allowing the receptors to send messages from inside the cell. Other types of adenylyl cyclase behaved differently. Adenylyl cyclase 1, for example, remained on the cell surface even after its receptors had left, and did not signal from inside the cell at all. Which cell behaviors are triggered from the membrane, and which are triggered from inside the cell is an important question in drug design. Understanding where effector proteins are active is a step towards finding the answers. This could help research into diseases of the heart, the liver and the lungs, all of which use adenylyl cyclase 9 to send signals.


Assuntos
Adenilil Ciclases/metabolismo , Endossomos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenilil Ciclases/genética , Membrana Celular/genética , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Endossomos/genética , Humanos , Transporte Proteico , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
5.
J Biol Chem ; 294(48): 18232-18243, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31640988

RESUMO

Fibrillins serve as scaffolds for the assembly of elastic fibers that contribute to the maintenance of tissue homeostasis and regulate growth factor signaling in the extracellular space. Fibrillin-1 is a modular glycoprotein that includes 7 latent transforming growth factor ß (TGFß)-binding protein-like (TB) domains and mediates cell adhesion through integrin binding to the RGD motif in its 4th TB domain. A subset of missense mutations within TB4 cause stiff skin syndrome (SSS), a rare autosomal dominant form of scleroderma. The fibrotic phenotype is thought to be regulated by changes in the ability of fibrillin-1 to mediate integrin binding. We characterized the ability of each RGD-binding integrin to mediate cell adhesion to fibrillin-1 or a disease-causing variant. Our data show that 7 of the 8 RGD-binding integrins can mediate adhesion to fibrillin-1. A single amino acid substitution responsible for SSS (W1570C) markedly inhibited adhesion mediated by integrins α5ß1, αvß5, and αvß6, partially inhibited adhesion mediated by αvß1, and did not inhibit adhesion mediated by α8ß1 or αIIbß3. Adhesion mediated by integrin αvß3 depended on the cell surface expression level. In the SSS mutant background, the presence of a cysteine residue in place of highly conserved tryptophan 1570 alters the conformation of the region containing the exposed RGD sequence within the same domain to differentially affect fibrillin's interactions with distinct RGD-binding integrins.


Assuntos
Adesão Celular , Fibrilina-1 , Integrinas , Síndrome de Marfan , Mutação de Sentido Incorreto , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Fibrilina-1/química , Fibrilina-1/genética , Fibrilina-1/metabolismo , Humanos , Integrinas/química , Integrinas/genética , Integrinas/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patologia , Camundongos , Domínios Proteicos
6.
Mol Pharmacol ; 91(2): 145-156, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27879340

RESUMO

The ability of chemically distinct ligands to produce different effects on the same G protein-coupled receptor (GPCR) has interesting therapeutic implications, but, if excessively propagated downstream, would introduce biologic noise compromising cognate ligand detection. We asked whether cells have the ability to limit the degree to which chemical diversity imposed at the ligand-GPCR interface is propagated to the downstream signal. We carried out an unbiased analysis of the integrated cellular response elicited by two chemically and pharmacodynamically diverse ß-adrenoceptor agonists, isoproterenol and salmeterol. We show that both ligands generate an identical integrated response, and that this stereotyped output requires endocytosis. We further demonstrate that the endosomal ß2-adrenergic receptor signal confers uniformity on the downstream response because it is highly sensitive and saturable. Based on these findings, we propose that GPCR signaling from endosomes functions as a biologic noise filter to enhance reliability of cognate ligand detection.


Assuntos
Endocitose , Receptores Acoplados a Proteínas G/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HEK293 , Humanos , Isoproterenol/farmacologia , Ligantes , Espectrometria de Massas , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteoma/metabolismo , Proteômica , Receptores Adrenérgicos beta 2/metabolismo , Xinafoato de Salmeterol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA