Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 169: 112618, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007616

RESUMO

We report a minimally invasive, synaptic transistor-based construct to monitor in vivo neuronal activity via a longitudinal study in mice and use depolarization time from measured data to predict the onset of polyneuropathy. The synaptic transistor is a three-terminal device in which ionic coupling between pre- and post-synaptic electrodes provides a framework for sensing low-power (sub µW) and high-bandwidth (0.1-0.5 kHz) ionic currents. A validated first principles-based approach is discussed to demonstrate the significance of this sensing framework and we introduce a metric, referred to as synaptic efficiency to quantify structural and functional properties of the electrodes in sensing. The application of this framework for in vivo neuronal sensing requires a post-synaptic electrode and its reference electrode and the tissue becomes the pre-synaptic signal. The ionic coupling resembles axo-axonic junction and hence we refer to this framework as an ad hoc synaptic junction. We demonstrate that this arrangement can be applied to measure excitability of sciatic nerves due to a stimulation of the footpad in cohorts of m+/db and db/db mice for detecting loss in sensitivity and onset of polyneuropathy. The signal attributes were subsequently integrated with machine learning-based framework to identify the probability of polyneuropathy and to detect the onset of diabetic polyneuropathy.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Neuropatias Diabéticas , Animais , Axônios , Neuropatias Diabéticas/diagnóstico , Estudos Longitudinais , Camundongos , Sinapses
2.
Antioxid Redox Signal ; 33(10): 713-724, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32466673

RESUMO

Significance: In the host-microbe microenvironment, bioelectrical factors influence microbes and hosts as well as host-microbe interactions. This article discusses relevant mechanistic underpinnings of this novel paradigm. It also addresses how such knowledge may be leveraged to develop novel electroceutical solutions to manage biofilm infection. Recent Advances: Systematic review and meta-analysis of several hundred wound studies reported a 78.2% prevalence of biofilms in chronic wounds. Biofilm infection is a major cause of delayed wound healing. In the host-microbe microenvironment, bioelectrical factors influence interactions between microbes and hosts. Critical Issues: Rapid biological responses are driven by electrical signals generated by ion currents moving across cell membranes. Bacterial life, growth, and function rely on a bioelectrical milieu, which when perturbed impairs their ability to form a biofilm, a major threat to health care. Electrokinetic stability of several viral particles depend on electrostatic forces. Weak electrical field strength, otherwise safe for humans, can be anti-microbial in this context. In the host, the electric field enhanced keratinocyte migration, bolstered immune defenses, improved mitochondrial function, and demonstrated multiple other effects consistent with supporting wound healing. A deeper mechanistic understanding of bioelectrical principles will inform the design of next-generation electroceuticals. Future Directions: This is an opportune moment in time as there is a surge of interest in electroceuticals in medicine. Projected to reach $35.5 billion by 2025, electroceuticals are becoming a cynosure in the global market. The World Health Organization reports that more than 50% of surgical site infections can be antibiotic resistant. Electroceuticals offer a serious alternative.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/etiologia , Infecções Bacterianas/terapia , Biofilmes/efeitos dos fármacos , Terapia por Estimulação Elétrica/métodos , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/terapia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Infecção da Ferida Cirúrgica/diagnóstico
3.
Biosens Bioelectron ; 151: 111975, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999582

RESUMO

Central chemoreception is the process whereby the brainstem senses blood gas levels and adjusts homeostatic functions such as breathing and cardiovascular tone accordingly. Rodent evidence suggests that the retrotrapezoid nucleus (RTN) is a master regulator of central chemoreception, in particular, through direct sensation of acidosis induced by CO2 levels. The oscillatory dynamics caused by pH changes as sensed by the RTN surface and its relationship to the fluctuations in cation flux is not clearly understood due to the current limitations of electrophysiology tools and this article presents our investigations to address this need. A cation selective sensor fabricated from polypyrrole doped with dodecyl benzenesulfonate (PPy (DBS)) is placed over RTN in an ex-vivo en bloc brain and changes in cation concentration in the diffusion limited region above the RTN is measured due to changes in externally imposed basal pH. The novelty of this technique lies in its feasibility to detect cation fluxes from the cells in the RTN region without having to access either sides of the cell membrane. Owing to the placement of the sensor in close proximity to the tissue, we refer to this technique as near-field electrophysiology. It is observed that lowering the pH in the physiological range (7.4-7.2) results in a significant increase in cation concentration in the vicinity of RTN with a median value of ~5 µM. The utilization of such quantifiable measurement techniques to detect sub-threshold brain activity may help provide a platform for future neural network architectures. Findings from this paper present a quantifiable, sensitive, and robust electrophysiology technique with minimal damage to the underlying tissue.


Assuntos
Técnicas Biossensoriais , Cátions/isolamento & purificação , Fenômenos Eletrofisiológicos , Trifosfato de Adenosina/química , Dióxido de Carbono/química , Cátions/química , Núcleo Celular/química , Humanos , Concentração de Íons de Hidrogênio
4.
Micron ; 120: 57-65, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776683

RESUMO

Ion transport through porous substrates is ubiquitous in biological and synthetic materials, and fundamental for chemical separation, drug delivery and bio-sensing. Contemporary imaging techniques for simultaneously characterizing topography and ion transport through porous substrates are limited in range and resolution. In this paper, we demonstrate 'surface-tracked scanning ion conductance microscopy' as a technique to image topography of a porous substrate and simultaneously measure voltage-driven transmembrane ion transport. This technique uses the principles of 'shear-force tracking' to image the surface of a polycarbonate track-etch membrane, and chronoamperometry to reconstruct topography-correlated transmembrane ion transport through the membrane at different transmembrane potentials. Spatial transmembrane transport through individual pores is modeled using Goldman-Hodgkin-Katz (GHK) theory to examine the effects of shear-force modulation on magnitude of transmembrane currents recorded with a nanopipette. The modeled transmembrane current through the porous membrane is compared with experimental behavior, and discrepancies between predicted values and measured data are outlined. The proposed surface-tracked imaging mode allows for rapid assessment (approximately 7 s/µm2) of interfacial processes at the nanoscale and addresses a bottleneck for stable, large-area characterization of porous substrates using scanning ion conductance microscopy.

5.
Nat Nanotechnol ; 12(10): 974-979, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28785092

RESUMO

Although cellular therapies represent a promising strategy for a number of conditions, current approaches face major translational hurdles, including limited cell sources and the need for cumbersome pre-processing steps (for example, isolation, induced pluripotency). In vivo cell reprogramming has the potential to enable more-effective cell-based therapies by using readily available cell sources (for example, fibroblasts) and circumventing the need for ex vivo pre-processing. Existing reprogramming methodologies, however, are fraught with caveats, including a heavy reliance on viral transfection. Moreover, capsid size constraints and/or the stochastic nature of status quo approaches (viral and non-viral) pose additional limitations, thus highlighting the need for safer and more deterministic in vivo reprogramming methods. Here, we report a novel yet simple-to-implement non-viral approach to topically reprogram tissues through a nanochannelled device validated with well-established and newly developed reprogramming models of induced neurons and endothelium, respectively. We demonstrate the simplicity and utility of this approach by rescuing necrotizing tissues and whole limbs using two murine models of injury-induced ischaemia.


Assuntos
Técnicas de Reprogramação Celular/métodos , Fibroblastos/metabolismo , Nanopartículas/química , Transfecção/métodos , Animais , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibroblastos/patologia , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/terapia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia
6.
Phys Chem Chem Phys ; 18(26): 17366-72, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27263628

RESUMO

Mechanoelectrochemistry is the study of elastic and plastic deformation of materials during reversible reduction and oxidation processes. In this article, we introduce shear-force tracking as a method to dynamically measure mechanical (strain), chemical (ion transport), and electrical (applied redox potentials) responses of the conducting polymer polypyrrole (PPy) during redox reactions. This tracking technique uses a control algorithm to maintain a set distance between a ultramicroelectrode (UME) tip and a surface via shear-force regulation. Due to the sensitivity of shear-force signals in the near field of substrate surfaces, a significantly improved signal to noise ratio (20 : 1) is possible and allows for nanoscale measurement of redox events. Chemomechanical coupling (the ratio of ion transport to resultant extensional actuation) is calculated for PPy-based membranes of various thicknesses based on a mechanistic interpretation of charge storage in redox active conducting polymers. The measured dynamic response demonstrates that chemomechanical coupling is not a constant, as assumed in literature, but is dependent on the polymers state of charge and the direction (ingress/egress) of ion transport.

7.
Phys Chem Chem Phys ; 17(48): 32268-75, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26583690

RESUMO

This paper investigates nanostructured morphology-dependent charge storage and coupled mechanical strain of polypyrrole membranes doped with dodecylbenzenesulfonate (PPy(DBS)). Nanoscale features introduced in PPy(DBS) using phospholipid vesicles as soft-templates create a uniform and long-range order to the polymer morphology, and lead to higher specific capacitance. It is widely stated that nanostructured architecture offer reduced mechanical loading at higher charge capacities, but metrics and methods to precisely quantify coupled localized strains do not exist. Towards this goal, we demonstrate the use of scanning electrochemical microscope with shear force imaging hardware (SECM-SF) to precisely measure charge storage function and volumetric strain simultaneously, and define two metrics--filling efficiency and chemomechanical coupling coefficient to compare nanostructured morphologies and thicknesses. For thin membranes (smaller charge densities), planar and vesicle-templated membranes have comparable mechanoelectrochemical response. For thick membranes (0.4 to 0.8 C cm(-2)), a 15% increase in charge storage is associated with 50% reduction in extensional strain. These results allow for the formulation of rules to design nanostructured PPy(DBS)-based actuators and energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA