RESUMO
Northern peatlands are globally important carbon stores. With increasing fire frequency, the re-establishment of bryophytes becomes crucial for their carbon sequestration. Smoke-responsive germination is a common trait of seeds in fire-prone ecosystems but has not been demonstrated in bryophytes. To investigate the potential role of smoke in post-fire peatland recovery, we tested the germination of spores of 15 bryophyte species after treatment with smoke-water. The smoke responsiveness of spores with different laboratory storage times and burial depths/age (3-200 years) was subsequently tested. Smoke increased the germination percentage for 10 of the species and the germination speed for four of these. Smoke responsiveness increased along the fire frequency gradient from open expanse to forest margin, consistent with the theory that this selects for the maintenance of fire-adapted traits. Smoke enhanced the germinability of 1-year but not 4-year laboratory-stored spores, and considerably increased the germinability of spores naturally buried in peat for up to ~200 years. The effect of fire may be overlooked in non-fire-prone ecosystems, such as those in which wetland bryophytes dominate. Our study reveals a mechanism by which an increase in fire frequency may lead to shifts in species dominance, which may affect long-term carbon sequestration in peatlands.
Assuntos
Briófitas , Germinação , Ecossistema , Fumaça , Sementes , EsporosRESUMO
Plants in flammable ecosystems have different response strategies to fire, such as increasing germination after exposure to smoke and break of dormancy through heat shock. Peatlands are ecosystems that are more likely to be disturbed by fire with increasing temperatures, but it is not clear how fire affects spore germination of Sphagnum, the dominant plants in peatlands. Here, we hypothesize that Sphagnum spores respond positively to single and combined treatments of moderate heat and smoke (by increased germinability), while spore germinability decreases in response to high temperature. We exposed the Sphagnum spores of four selected species (S. angustifolium, S. fuscum, S. magellanicum and S. squarrosum) collected from peatlands in the Changbai Mountains to heat (40, 60 and 100 °C), on its own and combined with smoke-water treatments. Our results showed that a heat of 100 °C inhibited the spore germination or even killed spores of all species, while spore germination of three (Sphagnumangustifolium, S. fuscum and S. squarrosum) of the four species was promoted by 40 and 60 °C heat compared to the control (20 °C). Hollow species (S. angustifolium and S. squarrosum) showed a stronger positive responsive to heat than hummock species (S. fuscum and S. magellanicum). Sphagnumfuscum spores responded positively to the combined heat and smoke treatment while the other species did not. For the first time, we demonstrate the positive effects of heat on its own and in combination with smoke on spore germination in wetland mosses, which may be important for the establishment and persistence of peatmoss populations after fire.
RESUMO
In peatland restoration we often lack an information whether re-established ecosystems are functionally similar to non-degraded ones. We re-analysed the long-term outcomes of restoration on vegetation and plant functional traits in 38 European fens restored by rewetting (18 sites) and topsoil removal (20 sites). We used traits related to nutrient acquisition strategies, competitiveness, seed traits, and used single- and multi-trait metrics. A separate set of vegetation records from near-natural fens with diverse plant communities was used to generate reference values to aid the comparisons. We found that both restoration methods enhanced the similarity of species composition to non-degraded systems but trait analysis revealed differences between the two approaches. Traits linked to nutrient acquisition strategies indicated that topsoil removal was more effective than rewetting. After topsoil removal competitive species in plant communities had decreased, while stress-tolerant species had increased. A substantial reduction in nutrient availability ruled out the effect of initial disturbance. An ability to survive and grow in anoxic conditions was enhanced after restoration, but the reference values were not achieved. Rewetting was more effective than topsoil removal in restricting variation in traits values permitted in re-developing vegetation. We found no indication of a shift towards reference in seed traits, which suggested that dispersal constraint and colonization deficit can be a widespread phenomena. Two functional diversity indices: functional richness and functional dispersion showed response to restoration and shifted values towards reference mires and away from the degraded systems. We concluded that targeting only one type of environmental stressor does not lead to a recovery of fens, as it provides insufficient level of stress to restore a functional ecosystem. In general, restoration efforts do not ensure the re-establishment and long-term persistence of fens. Restoration efforts result in recovery of fen ecosystems, confirmed with our functional trait analysis, although more rigid actions are needed for restoring fully functional mires, by achieving high and constant levels of anoxia and nutrient stresses.
Assuntos
Conservação dos Recursos Naturais/métodos , Fenômenos Fisiológicos Vegetais , Áreas Alagadas , Biodiversidade , Ecossistema , Europa (Continente) , Desenvolvimento Vegetal , Solo , Estresse FisiológicoRESUMO
It is well accepted that the shape of the dispersal kernel, especially its tail, has a substantial effect on the genetic structure of species. Theory predicts that dispersal by fat-tailed kernels reshuffles genetic material, and thus, preserves genetic diversity during colonization. Moreover, if efficient long-distance dispersal is coupled with random colonization, an inverse isolation effect is predicted to develop in which increasing genetic diversity per colonizer is expected with increasing distance from a genetically variable source. By contrast, increasing isolation leads to decreasing genetic diversity when dispersal is via thin-tailed kernels. Here, we use a well-established model group for dispersal biology (peat mosses: genus Sphagnum) with a fat-tailed dispersal kernel, and the natural laboratory of the Stockholm archipelago to study the validity of the inverse isolation hypothesis in spore-dispersed plants in island colonization. Population genetic structure of three species (Sphagnum fallax, Sphagnum fimbriatum and Sphagnum palustre) with contrasting life histories and ploidy levels were investigated on a set of islands using microsatellites. Our data show (Ï'(st), amova, IBD) that dispersal of the two most abundant species can be well approximated by a random colonization model. We find that genetic diversity per colonizer on islands increases with distance from the mainland for S. fallax and S. fimbriatum. By contrast, S. palustre deviates from this pattern, owing to its restricted distribution in the region, affecting its source pool strength. Therefore, the inverse isolation effect appears to hold in natural populations of peat mosses and, likely, in other organisms with small diaspores.
Assuntos
Variação Genética , Genética Populacional , Modelos Genéticos , Dispersão Vegetal , Sphagnopsida/genética , Ilhas , Repetições de Microssatélites , SuéciaRESUMO
It is well-known that many species with small diaspores can disperse far during extended temporal scales (many years). However, studies on short temporal scales usually only cover short distances (in, e.g., bryophytes up to 15 m). By using a novel experimental design, studying the realized dispersal, we extend this range by almost two orders of magnitude. We recorded establishment of the fast-growing moss Discelium nudum on introduced suitable substrates, placed around a translocated, sporulating mother colony. Around 2,000 pots with acidic clay were placed at different distances between 5 m and 600 m, in four directions, on a raised bog, with increased pot numbers with distance. The experiment was set up in April-May and the realized dispersal (number of colonized pots) was recorded in September. Close to the mother colony (up to 10 m), the mean colonization rates (ratio of colonized pots) exceeded 50%. At distances between 10 and 50 m colonization dropped sharply, but beyond 50 m the mean colonization rates stabilized and hardly changed (1-3%). The estimated density of spores causing establishments at the further distances (2-6 spores/m²) was realistic when compared to the estimated spore output from the central colonies. Our study supports calculations from earlier studies, limited to short distances, that a majority of the spores disperse beyond the nearest vicinity of a source. The even colonization pattern at further distances raises interesting questions about under what conditions spores are transported and deposited. However, it is clear that regular establishment is likely at the km-scale for this and many other species with similar spore output and dispersal mechanism.
Assuntos
Briófitas/fisiologia , Esporos/fisiologiaRESUMO
BACKGROUND AND AIMS: Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. METHODS: Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. KEY RESULTS: The maximum discharge speed measured was 3.6 m s(-1). Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R(2) = 0.58-0.65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0.84-1.86 cm s(-1), about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. CONCLUSIONS: The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.