Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39369072

RESUMO

BACKGROUND: Epidemiologic and animal studies both support relationships between exposures to per- and polyfluoroalkyl substances (PFAS) and harmful effects on the immune system. Accordingly, PFAS have been identified as potential environmental risk factors for adverse COVID-19 outcomes. OBJECTIVE: Here, we examine associations between PFAS contamination of U.S. community water systems (CWS) and county-level COVID-19 mortality records. Our analyses leverage two datasets: one at the subnational scale (5371 CWS serving 621 counties) and one at the national scale (4798 CWS serving 1677 counties). The subnational monitoring dataset was obtained from statewide drinking monitoring of PFAS (2016-2020) and the national monitoring dataset was obtained from a survey of unregulated contaminants (2013-2015). METHODS: We conducted parallel analyses using multilevel quasi-Poisson regressions to estimate cumulative incidence ratios for the association between county-level measures of PFAS drinking water contamination and COVID-19 mortality prior to vaccination onset (Jan-Dec 2020). In the primary analyses, these regressions were adjusted for several county-level sociodemographic factors, days after the first reported case in the county, and total hospital beds. RESULTS: In the subnational analysis, detection of at least one PFAS over 5 ng/L was associated with 12% higher [95% CI: 4%, 19%] COVID-19 mortality. In the national analysis, detection of at least one PFAS above the reporting limits (20-90 ng/L) was associated with 13% higher [95% CI: 8%, 19%] COVID-19 mortality. IMPACT STATEMENT: Our findings provide evidence for an association between area-level drinking water PFAS contamination and higher COVID-19 mortality in the United States. These findings reinforce the importance of ongoing state and federal monitoring efforts supporting the U.S. Environmental Protection Agency's 2024 drinking water regulations for PFAS. More broadly, this example suggests that drinking water quality could play a role in infectious disease severity. Future research would benefit from study designs that combine area-level exposure measures with individual-level outcome data.

2.
Environ Sci Technol ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412174

RESUMO

Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination. Clustering analysis indicates that the PFAS composition characteristic of AFFF is detectable in water and fishes >8 km from the source. Concentrations of 38 targeted PFAS and extractable organofluorine (EOF) decreased in fishes downgradient of the AFFF-contaminated source zones. However, PFAS concentrations remained above consumption limits at all locations within the affected watershed. Perfluoroalkyl sulfonamide precursors accounted for approximately half of targeted PFAS in fish tissues, which explain >90% of EOF across all sampling locations. Suspect screening analyses revealed the presence of a polyfluoroketone pharmaceutical in fish species, and a fluorinated agrochemical in water that likely does not accumulate in biological tissues, suggesting the presence of diffuse sources such as septic system and agrochemical inputs throughout the watershed in addition to AFFF contamination. Based on these results, monitoring programs that consider all hydrologically connected regions within watersheds affected by large PFAS sources would help ensure public health protection.

3.
Proc Natl Acad Sci U S A ; 121(40): e2405898121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312660

RESUMO

Global pollution has exacerbated accumulation of toxicants like methylmercury (MeHg) in seafood. Human exposure to MeHg has been associated with long-term neurodevelopmental delays and impaired cardiovascular health, while many micronutrients in seafood are beneficial to health. The largest MeHg exposure source for many general populations originates from marine fish that are harvested from the global ocean and sold in the commercial seafood market. Here, we use high-resolution catch data for global fisheries and an empirically constrained spatial model for seafood MeHg to examine the spatial origins and magnitudes of MeHg extracted from the ocean. Results suggest that tropical and subtropical fisheries account for >70% of the MeHg extracted from the ocean because they are the major fishing grounds for large pelagic fishes and the natural biogeochemistry in this region facilitates seawater MeHg production. Compounding this issue, micronutrients (selenium and omega-3 fatty acids) are lowest in seafood harvested from warm, low-latitude regions and may be further depleted by future ocean warming. Our results imply that extensive harvests of large pelagic species by industrial fisheries, particularly in the tropics, drive global public health concerns related to MeHg exposure. We estimate that 84 to 99% of subsistence fishing entities globally likely exceed MeHg exposure thresholds based on typical rates of subsistence fish consumption. Results highlight the need for both stringent controls on global pollution and better accounting for human nutrition in fishing choices.


Assuntos
Pesqueiros , Peixes , Compostos de Metilmercúrio , Alimentos Marinhos , Compostos de Metilmercúrio/análise , Humanos , Alimentos Marinhos/análise , Animais , Peixes/metabolismo , Exposição Ambiental , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 954: 176274, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39304148

RESUMO

This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.

5.
Environ Sci Technol ; 58(40): 17828-17837, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39327829

RESUMO

There is a need for reliable models to predict the food web bioaccumulation and assess ecological and human health risks of per- and polyfluoroalkyl substances (PFAS). This present study presents (i) the development of novel mechanistic aquatic and terrestrial food web bioaccumulation models for PFAS and (ii) an evaluation of model performance using available laboratory and field data. Model predictions of laboratory-measured bioconcentration factors and field-based bioaccumulation factors of PFAS in fish were in good agreement with observed data as measured by the mean model bias (MB), representing systematic over- or under-estimation and the standard deviation of the MB, representing general uncertainty. The models provide a mechanistic framework for evaluating the combined effect of simultaneously occurring uptake and elimination processes and indicate food web-specific magnification of PFAS, with the highest degree of biomagnification occurring in food webs composed of air-breathing wildlife. Albumin-water, structural protein-water, membrane-water distribution coefficients, and renal clearance rate are among the most important model parameters. With further development and testing, these models may be useful for future PFAS screening and risk assessment initiatives and advance bioaccumulation studies of PFAS by providing a mechanistic framework for PFAS bioaccumulation.


Assuntos
Cadeia Alimentar , Animais , Bioacumulação , Peixes/metabolismo , Poluentes Químicos da Água/metabolismo , Fluorocarbonos/metabolismo , Modelos Teóricos
6.
Environ Sci Technol ; 58(33): 14641-14650, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39161261

RESUMO

Adverse health effects associated with exposures to perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a concern for public health and are driven by their elimination half-lives and accumulation in specific tissues. However, data on PFAS binding in human tissues are limited. Accumulation of PFAS in human tissues has been linked to interactions with specific proteins and lipids in target organs. Additional data on PFAS binding and unbound fractions (funbound) in whole human tissues are urgently needed. Here, we address this gap by using rapid equilibrium dialysis to measure the binding and funbound of 16 PFAS with 3 to 13 perfluorinated carbon atoms (ηpfc = 3-13) and several functional headgroups in human liver, lung, kidney, heart, and brain tissue. We compare results to mouse (C57BL/6 and CD-1) and rat tissues. Results show that funbound decreases with increasing fluorinated carbon chain length and hydrophobicity. Among human tissues, PFAS binding was generally greatest in brain > liver ≈ kidneys ≈ heart > lungs. A correlation analysis among human and rodent tissues identified rat liver as a suitable surrogate for predicting funbound for PFAS in human tissues (R2 ≥ 0.98). The funbound data resulting from this work and the rat liver prediction method offer input parameters and tools for toxicokinetic models for legacy and emerging PFAS.


Assuntos
Fluorocarbonos , Fígado , Animais , Humanos , Ratos , Fígado/metabolismo , Camundongos , Distribuição Tecidual
7.
Integr Environ Assess Manag ; 20(6): 1839-1858, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38752651

RESUMO

Federal, state, tribal, or local entities in the United States issue fish consumption advisories (FCAs) as guidance for safer consumption of locally caught fish containing contaminants. Fish consumption advisories have been developed for commonly detected compounds such as mercury and polychlorinated biphenyls. The existing national guidance does not specifically address the unique challenges associated with bioaccumulation and consumption risk related to per- and polyfluoroalkyl substances (PFAS). As a result, several states have derived their own PFAS-related consumption guidelines, many of which focus on one frequently detected PFAS, known as perfluorooctane sulfonic acid (PFOS). However, there can be significant variation between tissue concentrations or trigger concentrations (TCs) of PFOS that support the individual state-issued FCAs. This variation in TCs can create challenges for risk assessors and risk communicators in their efforts to protect public health. The objective of this article is to review existing challenges, knowledge gaps, and needs related to issuing PFAS-related FCAs and to provide key considerations for the development of protective fish consumption guidance. The current state of the science and variability in FCA derivation, considerations for sampling and analytical methodologies, risk management, risk communication, and policy challenges are discussed. How to best address PFAS mixtures in the development of FCAs, in risk assessment, and establishment of effect thresholds remains a major challenge, as well as a source of uncertainty and scrutiny. This includes developments better elucidating toxicity factors, exposures to PFAS mixtures, community fish consumption behaviors, and evolving technology and analytical instrumentation, methods, and the associated detection limits. Given the evolving science and public interests informing PFAS-related FCAs, continued review and revision of FCA approaches and best practices are vital. Nonetheless, consistent, widely applicable, PFAS-specific approaches informing methods, critical concentration thresholds, and priority compounds may assist practitioners in PFAS-related FCA development and possibly reduce variability between states and jurisdictions. Integr Environ Assess Manag 2024;20:1839-1858. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Peixes , Fluorocarbonos , Contaminação de Alimentos , Poluentes Químicos da Água , Animais , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise , Humanos , Monitoramento Ambiental/métodos , Estados Unidos , Alimentos Marinhos
8.
Environ Sci Technol Lett ; 11(4): 350-356, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645703

RESUMO

Hundreds of sites across the United States have high concentrations of perfluoroalkyl sulfonamides (FASA), but little is known about their propensity to accumulate in fish. FASA are precursors to terminal per- and polyfluoroalkyl substances (PFAS) that are abundant in diverse consumer products and aqueous film-forming foams manufactured using electrochemical fluorination (ECF AFFF). In this study, FASA with C3-C8 carbon chain lengths were detected in all fish samples from surface waters up to 8 km downstream of source zones with ECF AFFF contamination. Short-chain FASA ≤ C6 have rarely been included in routine screening for PFAS, but availability of new standards makes such analyses more feasible. Bioaccumulation factors (BAF) for FASA were between 1 and 3 orders of magnitude greater than their terminal perfluoroalkyl sulfonates. Across fish species, BAF for FASA were greater than for perfluorooctanesulfonate (PFOS), which is presently the focus of national advisory programs. Similar concentrations of the C6 FASA (<0.36-175 ng g-1) and PFOS (0.65-222 ng g-1) were detected in all fish species. No safety thresholds have been established for FASA. However, high concentrations in fish next to contaminated sites and preliminary findings on toxicity suggest an urgent need for consideration by fish advisory programs.

9.
Environ Sci Process Impacts ; 26(2): 220, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38348925
10.
Environ Sci Technol ; 58(2): 1055-1063, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166384

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of highly persistent anthropogenic chemicals that are detectable in the serum of most humans. PFAS exposure has been associated with many adverse effects on human health including immunotoxicity, increased risk of certain cancers, and metabolic disruption. PFAS binding to the most abundant blood serum proteins (human serum albumin [HSA] and globulins) is thought to affect transport to active sites, toxicity, and elimination half-lives. However, few studies have investigated the competitive binding of PFAS to these proteins in human serum. Here, we use C18 solid-phase microextraction fibers to measure HSA-water and globulin-water distribution coefficients (DHSA/w, Dglob/w) for PFAS with carbon chains containing 4 to 13 perfluorinated carbons (ηpfc = 4-13) and several functional head-groups. PFAS with ηpfc < 7 were highly bound to HSA relative to globulins, whereas PFAS with ηpfc ≥ 7 showed a greater propensity for binding to globulins. Experimentally measured DHSA/w and Dglob/w and concentrations of serum proteins successfully predicted the variability in PFAS binding in human serum. We estimated that the unbound fraction of serum PFAS varied by up to a factor of 2.5 among individuals participating in the 2017-2018 U.S. National Health and Nutrition Examination Survey. These results suggest that serum HSA and globulins are important covariates for epidemiological studies aimed at understanding the effects of PFAS exposure.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Poluentes Ambientais , Fluorocarbonos , Globulinas , Humanos , Toxicocinética , Inquéritos Nutricionais , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Proteínas Sanguíneas , Carbono , Ácidos Alcanossulfônicos/análise , Poluentes Ambientais/análise
11.
ACS ES T Water ; 4(1): 114-124, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38222965

RESUMO

Despite concerns over the ubiquity of per- and polyfluoroalkyl substances (PFAS), little is known about the diversity of input sources to surface waters and their seasonal dynamics. Frequent use of PFAS in textiles means both active and closed textile mills require evaluation as PFAS sources. We deployed passive samplers at seven sites in an urban river and estuary adjacent to textile mills in Southern Rhode Island (USA) over 12 months. We estimated monthly mass flows (g month-1) of perfluorohexanoic acid (PFHxA: 45±56), and perfluorooctanoic acid (PFOA: 30±45) from the upstream river influenced by an active mill. Average mass flows were 73-155% higher downstream, where historical textile waste lagoons contributed long chain perfluoroalkyl acids (PFAA). Mass flows of PFNA increased from 7.5 to 21 g month-1 between the upstream and downstream portions of the rivers. Distinct grouping of the two main PFAS sources, active textile mills and historical waste lagoons, were identified using principal components analysis. Neither suspect screening nor extractable organofluorine analysis revealed measurable PFAS were missing beyond the targeted compounds. This research demonstrates that both closed and active textile mills are important ongoing PFAS sources to freshwater and marine regions and should be further evaluated as a source category.

12.
Environ Sci Technol ; 57(48): 20159-20168, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934924

RESUMO

Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds.


Assuntos
Anguilla , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Animais , Fluorocarbonos/análise , Água Subterrânea/química , Água , Flúor/análise , Flúor/química , Poluentes Químicos da Água/análise
13.
Environ Sci Technol Lett ; 10(7): 589-595, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37455865

RESUMO

Hazardous air pollutants emitted by United States (U.S) coal-fired power plants have been controlled by the Mercury and Air Toxics Standards (MATS) since 2012. Sociodemographic disparities in traditional air pollutant exposures from U.S. power plants are known to occur but have not been evaluated for mercury (Hg), a neurotoxicant that bioaccumulates in food webs. Atmospheric Hg deposition from domestic power plants decreased by 91% across the contiguous U.S. from 6.4 Mg in 2010 to 0.55 Mg in 2020. Prior to MATS, populations living within 5 km of power plants (n = 507) included greater proportions of frequent fish consumers, individuals with low annual income and less than a high school education, and limited English-proficiency households compared to the US general population. These results reinforce a lack of distributional justice in plant siting found in prior work. Significantly greater proportions of low-income individuals lived within 5 km of active facilities in 2020 (n = 277) compared to plants that retired after 2010, suggesting that socioeconomic status may have played a role in retirement. Despite large deposition declines, an end-member scenario for remaining exposures from the largest active power plants for individuals consuming self-caught fish suggests they could still exceed the U.S. Environmental Protection Agency reference dose for methylmercury.

14.
Environ Sci Technol ; 57(21): 8096-8106, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184088

RESUMO

Drinking water contamination by per- and polyfluoroalkyl substances (PFAS) is widespread near more than 300 United States (U.S.) military bases that used aqueous film-forming foams (AFFF) for fire training and firefighting activities. Much of the PFAS at these sites consist of precursors that can transform into terminal compounds of known health concern but are omitted from standard analytical methods. Here, we estimate the expected duration and contribution of precursor biotransformation to groundwater PFAS contamination at an AFFF-contaminated military base on Cape Cod, Massachusetts, United States, by optimizing a geochemical box model using measured PFAS concentrations from a multidecadal time series of groundwater and a soil survey in the source zone. A toolbox of analytical techniques used to reconstruct the mass budget of PFAS showed that precursors accounted for 46 ± 8% of the extractable organofluorine (a proxy for total PFAS) across years. Terminal PFAS still exceed regulatory limits by 2000-fold decades after AFFF use ceased. Measurements and numerical modeling show that sulfonamido precursors are retained in the vadose zone and their slow biotransformation into perfluoroalkyl sulfonates (half-life > 66 yr) sustains groundwater concentrations of perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS). The estimated PFAS reservoir in the vadose zone and modeled flux into groundwater suggest PFAS contamination above regulatory guidelines will persist for centuries without remediation.


Assuntos
Fluorocarbonos , Água Subterrânea , Militares , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Água , Poluição da Água , Fluorocarbonos/análise , Alcanossulfonatos , Água Subterrânea/química
15.
Environ Sci Technol ; 57(21): 7902-7912, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184106

RESUMO

Drinking water contaminated by per- and polyfluoroalkyl substances (PFAS) is a widespread public health concern, and exposure-response relationships are known to vary across sociodemographic groups. However, research on disparities in drinking water PFAS exposures and the siting of PFAS sources in marginalized communities is limited. Here, we use monitoring data from 7873 U.S. community water systems (CWS) in 18 states to show that PFAS detection is positively associated with the number of PFAS sources and proportions of people of color who are served by these water systems. Each additional industrial facility, military fire training area, and airport in a CWS watershed was associated with a 10-108% increase in perfluorooctanoic acid and a 20-34% increase in perfluorooctane sulfonic acid in drinking water. Waste sector sources were also significantly associated with drinking water PFAS concentrations. CWS watersheds with PFAS sources served higher proportions of Hispanic/Latino and non-Hispanic Black residents compared to those without PFAS sources. CWS serving higher proportions of Hispanic/Latino and non-Hispanic Black residents had significantly increased odds of detecting several PFAS. This likely reflects disparities in the siting of PFAS contamination sources. Results of this work suggest that addressing environmental justice concerns should be a component of risk mitigation planning for areas affected by drinking water PFAS contamination.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Água Potável/análise , Fatores Sociodemográficos , Poluentes Químicos da Água/análise , Poluição da Água , Fluorocarbonos/análise
16.
Environ Sci Technol ; 57(14): 5592-5602, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972708

RESUMO

Drinking water supplies across the United States have been contaminated by firefighting and fire-training activities that use aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS). Much of the AFFF is manufactured using electrochemical fluorination by 3M. Precursors with six perfluorinated carbons (C6) and non-fluorinated amine substituents make up approximately one-third of the PFAS in 3M AFFF. C6 precursors can be transformed through nitrification (microbial oxidation) of amine moieties into perfluorohexane sulfonate (PFHxS), a compound of regulatory concern. Here, we report biotransformation of the most abundant C6 sulfonamido precursors in 3M AFFF with available commercial standards (FHxSA, PFHxSAm, and PFHxSAmS) in microcosms representative of the groundwater/surface water boundary. Results show rapid (<1 day) biosorption to living cells by precursors but slow biotransformation into PFHxS (1-100 pM day-1). The transformation pathway includes one or two nitrification steps and is supported by the detection of key intermediates using high-resolution mass spectrometry. Increasing nitrate concentrations and total abundance of nitrifying taxa occur in parallel with precursor biotransformation. Together, these data provide multiple lines of evidence supporting microbially limited biotransformation of C6 sulfonamido precursors involving ammonia-oxidizing archaea (Nitrososphaeria) and nitrite-oxidizing bacteria (Nitrospina). Further elucidation of interrelationships between precursor biotransformation and nitrogen cycling in ecosystems would help inform site remediation efforts.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Ecossistema , Poluentes Químicos da Água/análise , Água Subterrânea/química , Biotransformação , Fluorocarbonos/análise , Alcanossulfonatos
17.
Curr Environ Health Rep ; 10(1): 45-60, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527604

RESUMO

PURPOSE OF REVIEW: This review aims to better understand the utility of machine learning algorithms for predicting spatial patterns of contaminants in the United States (U.S.) drinking water. RECENT FINDINGS: We found 27 U.S. drinking water studies in the past ten years that used machine learning algorithms to predict water quality. Most studies (42%) developed random forest classification models for groundwater. Continuous models show low predictive power, suggesting that larger datasets and additional predictors are needed. Categorical/classification models for arsenic and nitrate that predict exceedances of pollution thresholds are most common in the literature because of good national scale data coverage and priority as environmental health concerns. Most groundwater data used to develop models were obtained from the United States Geological Survey (USGS) National Water Information System (NWIS). Predictors were similar across contaminants but challenges are posed by the lack of a standard methodology for imputation, pre-processing, and differing availability of data across regions. We reviewed 27 articles that focused on seven drinking water contaminants. Good performance metrics were reported for binary models that classified chemical concentrations above a threshold value by finding significant predictors. Classification models are especially useful for assisting in the design of sampling efforts by identifying high-risk areas. Only a few studies have developed continuous models and obtaining good predictive performance for such models is still challenging. Improving continuous models is important for potential future use in epidemiological studies to supplement data gaps in exposure assessments for drinking water contaminants. While significant progress has been made over the past decade, methodological advances are still needed for selecting appropriate model performance metrics and accounting for spatial autocorrelations in data. Finally, improved infrastructure for code and data sharing would spearhead more rapid advances in machine-learning models for drinking water quality.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Humanos , Qualidade da Água , Nitratos/análise , Aprendizado de Máquina , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
18.
Environ Sci Technol ; 56(23): 17090-17099, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36331119

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of persistent, organic fluorinated chemicals added to materials and products mainly to repel stains and water. PFAS have been associated with many adverse human health effects. We aimed to determine whether buildings with "healthier" materials─defined here as reportedly free of all PFAS─exhibit lower PFAS in dust. In addition to analyzing targeted PFAS with available commercial standards, we measured extractable organic fluorine (EOF) as a novel proxy that includes both known and unknown types of PFAS. We measured at least 15 targeted PFAS (n = 24), EOF (n = 24), and total fluorine (TF; n = 14) in dust collected from university common spaces and classrooms, half of which had "healthier" furniture and carpet. We observed lower PFAS contamination in buildings with "healthier" materials: "healthier" rooms had a 66% lower median summed PFAS and a 49% lower Kaplan-Meier estimated mean EOF level in dust in comparison to conventional rooms. The summed targeted PFAS were significantly correlated with EOF but accounted for up to only 9% of EOF, indicating the likely presence of unidentified PFAS. EOF levels explained less than 1% of TF in dust. We emphasize the need to use chemical class-based methods (e.g., EOF) for evaluating class-based solutions and to expand non-PFAS solutions for other building materials.


Assuntos
Poeira , Fluorocarbonos , Humanos , Flúor , Fluorocarbonos/análise , Materiais de Construção , Compostos Orgânicos , Fluoretos
19.
Environ Sci Technol ; 56(22): 15573-15583, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36280234

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of fluorinated anthropogenic chemicals that include perfluoroalkyl acids (PFAA), which are widely used in modern commerce. Many products and environmental samples contain abundant precursors that can degrade into terminal PFAA associated with adverse health effects. Fish consumption is an important dietary exposure source for PFAS that bioaccumulate in food webs. However, little is known about bioaccumulation of PFAA precursors. Here, we identify and quantify PFAS in recreational fish species collected from surface waters across New Hampshire, US, using a toolbox of analytical methods. Targeted analysis of paired water and tissue samples suggests that many precursors below detection in water have a higher bioaccumulation potential than their terminal PFAA. Perfluorobutane sulfonamide (FBSA), a short-chain precursor produced by electrochemical fluorination, was detected in all fish samples analyzed for this compound. The total oxidizable precursor assay interpreted using Bayesian inference revealed fish muscle tissue contained additional, short-chain precursors in high concentration samples. Suspect screening analysis indicated these were perfluoroalkyl sulfonamide precursors with three and five perfluorinated carbons. Fish consumption advisories are primarily being developed for perfluorooctane sulfonate (PFOS), but this work reinforces the need for risk evaluations to consider additional bioaccumulative PFAS, including perfluoroalkyl sulfonamide precursors.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Fluorocarbonos/análise , Bioacumulação , Teorema de Bayes , Poluentes Químicos da Água/análise , Peixes/metabolismo , Água Doce , Água/metabolismo , Sulfonamidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA