Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Fish Biol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811362

RESUMO

The objective of the present study was to investigate the optimal dietary protein requirement and the effect of varying protein levels on the growth and health of juvenile, wild-caught Atlantic wolffish, Anarhichas lupus, a promising candidate for cold-water aquaculture diversification. Six iso-energetic (ca. 18.3 MJ kg-1), fish meal-based experimental diets were formulated with crude protein levels ranging from 35% to 60%, with graded increments of 5% in a 12-week feeding trial in a recirculating aquaculture system (RAS). Weight gain, specific growth rate (SGR), and condition factor (K) were evaluated in response to dietary protein levels. Liver, muscle, and blood parameters were assessed for possible changes in protein and lipid metabolism and welfare. Overall growth was highly variable throughout the experiment on all diets, as expected for a wild population. The feed with highest in protein (60%) inclusion resulted in the highest growth rates, with an average weight gain of 37.4% ± 33.8% and an SGR of 0.31% ± 0.2% day-1. This was closely followed by feeds with 55% and 50% protein inclusion with an average weight gain of 22.9% ± 34.8% and 28.5% ± 38.3%, respectively, and an SGR of 0.18% ± 0.3% day-1 and 0.22% ± 0.3% day-1, respectively. Fish fed the high protein diets generally had increased hepatic lipid deposition (17%-18%) and reduced free fatty acid levels (3.1-6.8 µmol L-1) in the plasma relative to fish that were fed the lower protein diets (35%-45%). No effects of diet were found on plasma protein levels or muscle protein content. Furthermore, stress parameters such as plasma cortisol and glucose levels were unaffected by diet, as were plasma ghrelin levels. Overall, these results suggest that a high protein inclusion in the diet for Atlantic wolffish is required to sustain growth with a minimum protein level of 50%.

2.
Heliyon ; 10(9): e30403, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726173

RESUMO

Aquaculture is essential for meeting the growing global demand for fish consumption. However, the widespread use of plastic and the presence of microplastics in aquaculture systems raise concerns about their impact on fish health and the safety of aquaculture products. This study focused on the Nile tilapia (Oreochromis niloticus), one of the most important aquaculture fish species globally. The aim of this study was to investigate the effects of dietary exposure to a mixture of four conventional fossil fuel-based polymers (microplastics) on the health of adult and juvenile Nile tilapia. Two experiments were conducted, with 36 juvenile tilapia (10-40 g weight) exposed for 30 days and 24 adult tilapia (600-1000 g) exposed for 7 days, the former including a natural particle (kaolin) treatment. In the adult tilapia experiment, no significant effects on intestinal health (Ussing chamber method), oxidative stress, or inflammatory pathways (enzymatic and genetic biomarkers) were observed after exposure to the microplastic mixture. However, in the juvenile tilapia experiment, significant alterations in inflammatory pathways were observed following 30 days of exposure to the microplastic mixture, indicating potential adverse effects on fish health. These results highlight the potential negative impacts of microplastics on fish health and the economics and safety of aquaculture.

3.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R484-R498, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406842

RESUMO

Salmonid fish include some of the most valued cultured fish species worldwide. Unlike most other fish, the hearts of salmonids, including Atlantic salmon and rainbow trout, have a well-developed coronary circulation. Consequently, their hearts' reliance on oxygenation through coronary arteries leaves them prone to coronary lesions, believed to precipitate myocardial ischemia. Here, we mimicked such coronary lesions by subjecting groups of juvenile rainbow trout to coronary ligation, assessing histomorphological myocardial changes associated with ischemia and scarring in the context of cardiac arrhythmias using electrocardiography (ECG). Notable ECG changes resembling myocardial ischemia-like ECG in humans, such as atrioventricular blocks and abnormal ventricular depolarization (prolonged and fragmented QRS complex), as well as repolarization (long QT interval) patterns, were observed during the acute phase of myocardial ischemia. A remarkable 100% survival rate was observed among juvenile trout subjected to coronary ligation after 24 wk. Recovery from coronary ligation occurred through adaptive ventricular remodeling, coupled with a fast cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health in salmonid fish, a family particularly susceptible to cardiac diseases. Furthermore, our results provide valuable insights into comparative studies on the evolution, pathophysiology, and ontogeny of vertebrate cardiac repair and restoration.NEW & NOTEWORTHY Juvenile rainbow trout exhibit a remarkable capacity to recover from cardiac injury caused by myocardial ischemia. Recovery from cardiac damage occurs through adaptive ventricular remodeling, coupled with a rapid cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health within salmonid fishes, which are particularly susceptible to cardiac diseases.


Assuntos
Isquemia Miocárdica , Oncorhynchus mykiss , Animais , Isquemia Miocárdica/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Remodelação Ventricular , Eletrocardiografia , Doenças dos Peixes/fisiopatologia , Doenças dos Peixes/patologia , Fatores de Tempo
5.
J Fish Biol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843903

RESUMO

Due to the growth of aquaculture and the finite supply of fishmeal and oil, alternative marine protein and lipid sources are highly sought after. Particularly promising is the use of side streams from the fish processing industry, allowing for the recovery and retention of otherwise lost nutrients in the food production chain. The aim of the present study was to evaluate the potential of three fish processing side streams as fish feed ingredients. The side streams originated from different stages of the production chain, were used without further processing, and included sprat trimmings (heads, frames, viscera), marinated herring (fillets) and mackerel in tomato sauce (fillets and sauce). The three side streams contained moderate levels of protein (28-32% dry matter) and high levels of lipid (34-43%). The sprat trimmings included ca. 29% ash and 1.5% phosphorous which may add value due to the high level of essential minerals but needs to be considered in feed formulations. Three diets were formulated to include 50% of each side stream replacing all fishmeal and ca. 80% of the fish oil of the control diet, which contained 35% fishmeal and 10% fish oil. The diets were evaluated in a 12-week feeding trial using rainbow trout (Oncorhynchus mykiss). Fish fed the sprat diet displayed the highest feed intake and growth, and showed no negative effects on the intestinal health. The mackerel side stream displayed a good digestibility but resulted in lower growth rates compared to the sprat trimmings. Fish fed the herring diet, displayed the lowest performance regarding growth, feed intake and digestibility. They further exhibited a reduction in nutrient uptake in both proximal and distal intestine, likely contributing to the observed lower digestibility and growth, and a reduction in plasma ghrelin levels. As part of a circular approach to increase marine lipid and protein production for fish feed, the tested sprat and mackerel side streams are promising raw materials however additional studies using more commercial-like feed formulations are encouraged.

6.
Sci Rep ; 12(1): 22205, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564520

RESUMO

Na+/K+-ATPases (NKA) in the basolateral membrane of the intestinal enterocytes create a Na+-gradient that drives both ion-coupled fluid uptake and nutrient transport. Being dependent on the same gradient as well as on the environmental salinity, these processes have the potential to affect each other. In salmonids, L-lysine absorption has been shown to be higher in freshwater (FW) than in seawater (SW) acclimated fish. Using electrophysiology (Ussing chamber technique), the aim was to explore if the decrease in L-lysine transport was due to allocation of the Na+-gradient towards ion-driven fluid uptake in SW, at the cost of amino acid transport. Intestinal NKA activity was higher in SW compared to FW fish. Exposure to ouabain, an inhibitor of NKA, decreased L-lysine transport. However, exposure to bumetanide and hydrochlorothiazide, inhibitors of Na+, K+, 2Cl--co-transporter (NKCC) and Na+, Cl--co-transporter (NCC) respectively, did not affect the rate of intestinal L-lysine transport. In conclusion, L-lysine transport is Na+-dependent in rainbow trout and the NKA activity and thus the available Na+-gradient increases after SW acclimation. This increased Na+-gradient is most likely directed towards osmoregulation, as amino acid transport is not compromised in SW acclimated fish.


Assuntos
Oncorhynchus mykiss , Simportadores , Animais , Oncorhynchus mykiss/metabolismo , Salinidade , Lisina/metabolismo , Intestinos , Sódio/metabolismo , Aclimatação/fisiologia , Simportadores/metabolismo , Água do Mar , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Virulence ; 13(1): 1741-1751, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36205522

RESUMO

Carbohydrates can both protect against infection and act as targets promoting infection. Mucins are major components of the slimy mucus layer covering the fish epithelia. Mucins can act as decoys for intimate pathogen interaction with the host afforded by binding to glycosphingolipids in the host cell membrane. We isolated and characterized glycosphingolipids from Atlantic salmon skin, gill, stomach, pyloric caeca, and intestine. We characterized the glycosphingolipids using liquid chromatography - mass spectrometry and tandem mass spectrometry and the glycan repertoire was compared with the glycan repertoire of mucins from the same epithelia. We also investigated Aeromonas salmonicida binding using chromatogram and microtiter well based binding assays. We identified 29 glycosphingolipids. All detected acid glycans were of the ganglio-series (unless shorter) and showed a high degree of polysialylation. The non-acid glycans were mostly composed of the neolacto, globo, and ganglio core structures. The glycosphingolipid repertoire differed between epithelia and the proportion of the terminal moieties of the glycosphingolipids did not reflect the terminal moieties on the mucins from the same epithelia. A. salmonicida did not bind the Atlantic salmon glycosphingolipids. Instead, we identified that A. salmonicida binding to sialic acid occurred to α2-6 Neu5Ac but not to α2-3 Neu5Ac. α2-6 Neu5Ac was present on mucins whereas mainly α2-3 Neu5Ac was found on the glycosphingolipids, explaining the difference in A. salmonicida binding ability between these host glycoconjugates. A. salmonicida´s ability to bind to Atlantic salmon mucins, but not the glycosphingolipids, is likely part of the host defence against this pathogen.


Assuntos
Aeromonas salmonicida , Aeromonas salmonicida/metabolismo , Animais , Ceco , Brânquias/metabolismo , Glicoesfingolipídeos , Intestinos , Mucinas/metabolismo , Ácido N-Acetilneuramínico/análise , Polissacarídeos/metabolismo , Estômago , Espectrometria de Massas em Tandem
8.
Environ Pollut ; 315: 120434, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36273689

RESUMO

Many studies have now reported adverse effects of exposure to microplastics in aquatic organisms. Still, relatively few studies have compared the effects of MPs with those of natural particle controls, which makes it difficult to separate particle effects from chemical effects. In this study, we carry out a meta-analysis of 26 studies to compare the effects of MPs and natural particles on aquatic animals using three different endpoints - growth, reproduction, and mortality. This analysis showed that MPs have the capacity to induce more adverse effects on growth, reproduction, and mortality for some taxonomic groups. However, the effects of exposure to MPs are not consistent across each endpoint or between taxonomic groups. We were not able to clearly discern differing impacts resulting from exposure to specific polymer types or shapes, though more negative effects were associated with polylactic acid and polyethylene, as well as fragments as opposed to beads or fibres. Additionally, meta-regression indicated that larger MP sizes, higher experimental temperatures, and longer exposure periods were all generally associated with more adverse effects. Future studies should continue to make use of negative particle controls to allow for better risk assessment of microplastics and nanoplastics in aquatic ecosystems.


Assuntos
Microplásticos , Animais , Organismos Aquáticos , Ecossistema , Invertebrados , Microplásticos/toxicidade
9.
Mar Pollut Bull ; 180: 113755, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35642800

RESUMO

We assessed textile microfibers impacts on the three-spined stickleback, using synthetic and natural fibers originating from yarns or washer effluents. After water exposure at 200 fibers/L, we assessed fish survival, behavior, tissue morphology and hemoglobin concentration, and paid special attention to exposure characterization. We report quantitative fiber distribution in the exposure system, fiber size distribution, and contamination. We provide a fiber preparation procedure and exposure method intended to ensure accurate and stable concentrations over time. Following exposure, no effect was observed on the studied endpoints in any of the treatment conditions. We observed fast sinking of the fibers. Fish organs and feces contained 1.3% and 6.8% of recovered fibers, and 12.6% fibers were found adhered to the tank walls. We show that water renewals in semi-static exposures is a critical step for the maintenance of stable concentrations, and discuss the practical and/or methodological challenges associated to the study of microfibers.


Assuntos
Smegmamorpha , Animais , Peixes , Têxteis , Água
10.
Biology (Basel) ; 11(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35625453

RESUMO

With laboratory zebrafish (Danio rerio) being an established and popular research model, there is a need for universal, research-based husbandry guidelines for this species, since guidelines can help promote good welfare through providing appropriate care. Despite the widespread use of zebrafish in research, it remains unclear how holding densities affect their welfare. Previous studies have mainly evaluated the effects of holding densities on a single parameter, such as growth, reproductive output, or social interactions, rather than looking at multiple welfare parameters simultaneously. Here we investigated how chronic (nine weeks) exposure to five different holding densities (1, 4, 8, 12, and 16 fish/L) affected multiple welfare indicators. We found that fish in the 1 fish/L density treatment had higher free water cortisol concentrations per fish, increased vertical distribution, and displayed aggressive behaviour more frequently than fish held at higher densities. On the other hand, density treatments had no effect on anxiety behaviour, whole-brain neurotransmitter levels, egg volume, or the proportion of fertilised eggs. Our results demonstrate that zebrafish can be held at densities between 4 and 16 fish/L without compromising their welfare. However, housing zebrafish in the density of 1 fish/L increased their stress level and aggressive behaviour.

11.
Front Physiol ; 13: 883621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574453

RESUMO

Due to a limited access to marine raw materials from capture fisheries, Atlantic salmon feeds are currently based on mainly plant ingredients (75%) while only 25% come from traditional marine ingredients including marine fish meal and fish oil. Thus, current feeds contain less of the essential omega-3 fatty acids. The aim of the study was to assess the impact of different omega-3 levels in fish feed on intestinal barrier and transporting functions of Atlantic salmon freshwater and seawater smolts. Atlantic salmon were fed three levels of omega-3 (2, 1 and 0.5%) and fish performance was followed through smoltification and the subsequent seawater acclimation. Intestinal barrier and transporting functions were assessed using Ussing chamber methodology and combined with transcript analysis of tight junction related proteins and ion transporters. A linear decrease in growth was observed with decreasing omega-3 levels. Low (0.5%) inclusion of omega-3 impaired the barrier function of the proximal intestine compared to 2% inclusion. Further, low levels of omega-3 decrease the transepithelial electrical potential across the epithelium indicating disturbed ion transport. It can be concluded that low dietary levels of omega-3 impair somatic growth and intestinal function of Atlantic salmon.

12.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457143

RESUMO

One of the most important bacterial diseases in salmonid aquaculture is furunculosis, caused by Aeromonas salmonicida. Bacterial communication through secreted autoinducer signals, quorum sensing, takes part in the regulation of gene expression in bacteria, influencing growth and virulence. The skin and mucosal surfaces, covered by a mucus layer, are the first point of contact between fish and bacteria. Mucins are highly glycosylated and are the main components of mucus. Here, we validate the Vibrio harveyi BB170 bioreporter assay for quantifying A. salmonicida quorum sensing and study the effects of Atlantic salmon mucins as well as mono- and disaccharides on the AI-2 levels of A. salmonicida. Atlantic salmon mucins from skin, pyloric ceca, proximal and distal intestine reduced A. salmonicida AI-2 levels. Among the saccharides abundant on mucins, fucose, N-acetylneuraminic acid and GlcNAcß1-3Gal inhibited AI-2 A. salmonicida secretion. Removal of N-acetylneuraminic acid, which is the most abundant terminal residue on mucin glycans on Atlantic salmon mucins, attenuated the inhibitory effects on AI-2 levels of A. salmonicida. Deletion of A. salmonicida luxS abolished AI-2 production. In conclusion, Atlantic salmon mucins regulate A. salmonicida quorum sensing in a luxS and N-acetylneuraminic acid-dependent manner.


Assuntos
Aeromonas salmonicida , Salmo salar , Aeromonas salmonicida/metabolismo , Animais , Proteínas de Bactérias/genética , Mucinas/metabolismo , Ácido N-Acetilneuramínico , Percepção de Quorum , Salmo salar/metabolismo
13.
Fish Shellfish Immunol ; 122: 181-190, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35077869

RESUMO

Mucus, whereof the highly glycosylated mucins are a major component, protects the epithelial mucosal surfaces. The aim of this study was to characterize the rainbow trout (Oncorhynchus mykiss) gastrointestinal mucus barrier function, mucin production, glycosylation and response to lipopolysaccharide. Both gastric and intestinal mucus was thick and impenetrable to bacteria-sized beads ex vivo. The secreted mucus covering the gastric epithelium predominantly contained sialylated mucins. Plume-like structures emerging from the gastric pits were both sialylated and fucosylated, indicating heterogeneity in gastric mucus secreted by the surface mucus cells and gland secretory cells, whereas intestinal mucus appeared more homogenous. In vivo metabolic mucin labelling revealed regional differences in mucin production and basal to apical transport, while lipopolysaccharide stimulation increased the rate of mucin production and basal to apical transport in both stomach and intestine. Using mass spectrometry, 34 mucin O-glycans were identified, with ∼70% of the relative abundance being sialylated, ∼40% di-sialylated and 20-25% fucosylated. No effects of lipopolysaccharide treatment were apparent regarding O-glycan repertoires, relative abundance of components, size distribution or core structures. Thus, the mucus production and organization differ between epithelial sites but provide a barrier to bacteria in both stomach and intestine. Furthermore, mucin production and basal to apical transport was stimulated by lipopolysaccharide in all regions, suggesting a mechanism to combat infections.


Assuntos
Mucinas , Oncorhynchus mykiss , Animais , Glicosilação , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Mucinas/metabolismo , Muco/metabolismo , Oncorhynchus mykiss/metabolismo
14.
J Exp Biol ; 224(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792140

RESUMO

Coronary arteriosclerosis is a common feature of both wild and farmed salmonid fishes and may be linked to stress-induced cardiac pathologies. Yet, the plasticity and capacity for long-term myocardial restructuring and recovery following a restriction in coronary blood supply are unknown. Here, we analyzed the consequences of acute (3 days) and chronic (from 33 to 62 days) coronary occlusion (i.e. coronary artery ligation) on cardiac morphological characteristics and in vivo function in juvenile rainbow trout, Oncorhynchus mykiss. Acute coronary artery occlusion resulted in elevated resting heart rate and decreased inter-beat variability, which are both markers of autonomic dysfunction following acute myocardial ischemia, along with severely reduced heart rate scope (maximum-resting heart rate) relative to sham-operated trout. We also observed a loss of myocardial interstitial collagen and compact myocardium. Following long-term coronary artery ligation, resting heart rate and heart rate scope normalized relative to sham-operated trout. Moreover, a distinct fibrous collagen layer separating the compact myocardium into two layers had formed. This may contribute to maintain ventricular integrity across the cardiac cycle or, alternatively, demark a region of the compact myocardium that continues to receive oxygen from the luminal venous blood. Taken together, we demonstrate that rainbow trout may cope with the aversive effects caused by coronary artery obstruction through plastic ventricular remodeling, which, at least in part, restores cardiac performance and myocardium oxygenation.


Assuntos
Infarto do Miocárdio , Oncorhynchus mykiss , Animais , Coração , Infarto do Miocárdio/veterinária , Miocárdio , Oxigênio
15.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540792

RESUMO

The skin barrier consists of mucus, primarily comprising highly glycosylated mucins, and the epithelium. Host mucin glycosylation governs interactions with pathogens and stress is associated with impaired epithelial barrier function. We characterized Atlantic salmon skin barrier function during chronic stress (high density) and mucin O-glycosylation changes in response to acute and chronic stress. Fish held at low (LD: 14-30 kg/m3) and high densities (HD: 50-80 kg/m3) were subjected to acute stress 24 h before sampling at 17 and 21 weeks after start of the experiment. Blood parameters indicated primary and secondary stress responses at both sampling points. At the second sampling, skin barrier function towards molecules was reduced in the HD compared to the LD group (Papp mannitol; p < 0.01). Liquid chromatography-mass spectrometry revealed 81 O-glycan structures from the skin. Fish subjected to both chronic and acute stress had an increased proportion of large O-glycan structures. Overall, four of the O-glycan changes have potential as indicators of stress, especially for the combined chronic and acute stress. Stress thus impairs skin barrier function and induces glycosylation changes, which have potential to both affect interactions with pathogens and serve as stress indicators.


Assuntos
Aglomeração , Mucinas/metabolismo , Muco/química , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Salmo salar/metabolismo , Absorção Cutânea/fisiologia , Pele/metabolismo , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Animais , Biomarcadores , Cromatografia Líquida , Aglomeração/psicologia , Glicosilação , Hidrocortisona/sangue , Manitol/farmacocinética , Espectrometria de Massas , Mucinas/isolamento & purificação , Muco/metabolismo , Ácido N-Acetilneuramínico/isolamento & purificação , Oxigênio/análise , Polissacarídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional , Salmo salar/sangue , Pele/ultraestrutura , Temperatura , Qualidade da Água
16.
Microorganisms ; 8(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256221

RESUMO

Amoebic gill disease (AGD) causes poor performance and death in salmonids. Mucins are mainly comprised by carbohydrates and are main components of the mucus covering the gill. Since glycans regulate pathogen binding and growth, glycosylation changes may affect susceptibility to primary and secondary infections. We investigated gill mucin O-glycosylation from Atlantic salmon with and without AGD using liquid chromatography-mass spectrometry. Gill mucin glycans were larger and more complex, diverse and fucosylated than skin mucins. Confocal microscopy revealed that fucosylated mucus coated sialylated mucus strands in ex vivo gill mucus. Terminal HexNAcs were more abundant among O-glycans from AGD-affected Atlantic salmon, whereas core 1 structures and structures with acidic moieties such as N-acetylneuraminic acid (NeuAc) and sulfate groups were less abundant compared to non-infected fish. The fucosylated and NeuAc-containing O-glycans were inversely proportional, with infected fish on the lower scale of NeuAc abundance and high on fucosylated structures. The fucosylated epitopes were of three types: Fuc-HexNAc-R, Gal-[Fuc-]HexNAc-R and HexNAc-[Fuc-]HexNAc-R. These blood group-like structures could be an avenue to diversify the glycan repertoire to limit infection in the exposed gills. Furthermore, care must be taken when using skin mucus as proxy for gill mucus, as gill mucins are distinctly different from skin mucins.

17.
Sci Rep ; 10(1): 5583, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221366

RESUMO

Bio-logging devices can provide unique insights on the life of freely moving animals. However, implanting these devices often requires invasive surgery that causes stress and physiological side-effects. While certain medications in connection to surgeries have therapeutic capacity, others may have aversive effects. Here, we hypothesized that the commonly prescribed prophylactic treatment with enrofloxacin would increase the physiological recovery rate and reduce the presence of systemic inflammation following the intraperitoneal implantation of a heart rate bio-logger in rainbow trout (Oncorhynchus mykiss). To assess post-surgical recovery, heart rate was recorded for 21 days in trout with or without enrofloxacin treatment. Contrary to our hypothesis, treated trout exhibited a prolonged recovery time and elevated resting heart rates during the first week of post-surgical recovery compared to untreated trout. In addition, an upregulated mRNA expression of TNFα in treated trout indicate a possible inflammatory response 21 days post-surgery. Interestingly, the experience level of the surgeon was observed to have a long-lasting impact on heart rate. In conclusion, our study showed no favorable effects of enrofloxacin treatment. Our findings highlight the importance of adequate post-surgical recovery times and surgical training with regards to improving the welfare of experimental animals and reliability of research outcomes.


Assuntos
Antibioticoprofilaxia/veterinária , Oncorhynchus mykiss/cirurgia , Tecnologia de Sensoriamento Remoto/veterinária , Animais , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Enrofloxacina/efeitos adversos , Enrofloxacina/uso terapêutico , Feminino , Frequência Cardíaca/efeitos dos fármacos , Hidrocortisona/sangue , Inflamação/prevenção & controle , Inflamação/veterinária , Masculino , Peritônio/cirurgia , RNA Mensageiro/metabolismo , Tecnologia de Sensoriamento Remoto/efeitos adversos , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos
18.
Biosens Bioelectron ; 146: 111736, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586762

RESUMO

Knowledge on host-pathogen interactions contributes to the development of approaches to alleviate infectious disease. In this work, we developed a surface plasmon resonance (SPR) based method for investigating bacteria/mucins interactions. Furthermore, we investigated adhesion of three pathogens, Aeromonas salmonicida, Aeromonas hydrophila and Vibrio harveyi, to Atlantic salmon mucins isolated from different epithelial sites, using SPR and microtiter-based binding assays. We demonstrated that performing bacterial binding assays to mucins using SPR is feasible and has advantages over microtiter-based binding assays, especially under flow conditions. The fluid flow in the SPR is linear and continuous and SPR enables real-time reading of mucin-bacterial bonds, which provides an in vivo-like setup for analysis of bacterial binding to mucins. The variation between technical replicates was smaller using SPR detection compared to the adenosine 5'-triphosphate (ATP) bioluminescence assay in microtiter plates. Furthermore, we demonstrated that the effect of flow on pathogen-mucin interaction is significant and that bacterial adhesion differ non-linearly with flow rates and depend on the epithelial source of the mucin.


Assuntos
Infecções Bacterianas/veterinária , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Mucinas/metabolismo , Salmo salar/microbiologia , Animais , Infecções Bacterianas/metabolismo , Doenças dos Peixes/metabolismo , Ligação Proteica , Salmo salar/metabolismo , Ressonância de Plasmônio de Superfície/métodos
19.
Sci Rep ; 9(1): 9090, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235773

RESUMO

Investigating the mechanisms that fish employ to maintain homeostasis in their everyday life requires measurements of physiological and behavioural responses in the field. With multivariate bio-loggers, we continuously measured gastrointestinal blood flow (GBF), heart rate, activity and body temperature in rainbow trout (Oncorhynchus mykiss) swimming freely amongst ~5000 conspecifics in a sea cage. Our findings clearly demonstrate that while both acute aquaculture-related stress and spontaneous activity resulted in transient reductions in GBF (i.e. reductions of up to 65%), recovery from stressful handling practices subsequently involved a substantial and prolonged gastrointestinal hyperemia far beyond the level observed prior to the stressor. The gastrointestinal hyperemia may be necessary to repair the damage to the gastrointestinal tract caused by acute stress. Furthermore, heart rate responses to acute stress or voluntary activity differed depending on the individual's physiological state. Stressed fish (i.e. mean heart rates >70 beats min-1) exhibited a bradycardic response to acute stress or activity, whereas fish with mean heart rates <60 beats min-1 instead demonstrated strong tachycardic responses. Remote monitoring of physiological and behavioural variables using bio-loggers can provide unique insights into 'real-life' responses of animals, which can largely differ from the responses observed in confined laboratory settings.


Assuntos
Aquicultura , Fenômenos Fisiológicos Cardiovasculares , Monitorização Fisiológica/métodos , Oncorhynchus mykiss/fisiologia , Tecnologia de Sensoriamento Remoto/métodos , Estresse Fisiológico , Natação , Animais
20.
PLoS One ; 14(5): e0215583, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31125340

RESUMO

Disease outbreaks are limiting factors for an ethical and economically sustainable aquaculture industry. The first point of contact between a pathogen and a host occurs in the mucus, which covers the epithelial surfaces of the skin, gills and gastrointestinal tract. Increased knowledge on host-pathogen interactions at these primary barriers may contribute to development of disease prevention strategies. The mucus layer is built of highly glycosylated mucins, and mucin glycosylation differs between these epithelial sites. We have previously shown that A. salmonicida binds to Atlantic salmon mucins. Here we demonstrate binding of four additional bacteria, A. hydrophila, V. harveyi, M. viscosa and Y. ruckeri, to mucins from Atlantic salmon and Arctic char. No specific binding could be observed for V. salmonicida to any of the mucin groups. Mucin binding avidity was highest for A. hydrophila and A. salmonicida, followed by V. harveyi, M. viscosa and Y. ruckeri in decreasing order. Four of the pathogens showed highest binding to either gills or intestinal mucins, whereas none of the pathogens had preference for binding to skin mucins. Fluid velocity enhanced binding of intestinal mucins to A. hydrophila and A. salmonicida at 1.5 and 2 cm/s, whereas a velocity of 2 cm/s for skin mucins increased binding of A. salmonicida and decreased binding of A. hydrophila. Binding avidity, specificity and the effect of fluid velocity on binding thus differ between salmonid pathogens and with mucin origin. The results are in line with a model where the short skin mucin glycans contribute to contact with pathogens whereas pathogen binding to mucins with complex glycans aid the removal of pathogens from internal epithelial surfaces.


Assuntos
Bactérias Gram-Negativas/metabolismo , Mucinas/metabolismo , Salmo salar/microbiologia , Truta/microbiologia , Aeromonas hydrophila/metabolismo , Aliivibrio salmonicida/metabolismo , Animais , Proteínas de Peixes/metabolismo , Moritella/metabolismo , Salmo salar/metabolismo , Especificidade da Espécie , Truta/metabolismo , Vibrio/metabolismo , Yersinia ruckeri/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA