Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Photochem Photobiol ; 93(2): 479-485, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27861940

RESUMO

Unlike the enchanting yellow-green flashes of light produced on warm summer evenings by Photinus pyralis, the most common firefly species in North America, the orange lights of Photinus scintillans are infrequently observed. These Photinus species, and likely all bioluminescent beetles, use the same substrates beetle luciferin, ATP and oxygen to produce light. It is the structure of the particular luciferase enzyme that is the key to determining the color of the emitted light. We report here the molecular cloning of the P. scintillans luc gene and the expression and characterization of the corresponding novel recombinant luciferase enzyme. A comparison of the amino acid sequence with that of the highly similar P. pyralis enzyme and subsequent mutagenesis studies revealed that the single conservative amino acid change tyrosine to phenylalanine at position 255 accounted for the entire emission color difference. Additional mutagenesis and crystallographic studies were performed on a H-bond network, which includes the position 255 residue and five other stringently conserved beetle luciferase residues, that is proximal to the substrate/emitter binding site. The results are interpreted in the context of a speculative proposal that this network is key to the understanding of bioluminescence color determination.


Assuntos
Cor , Luciferases de Vaga-Lume/metabolismo , Luminescência , Substituição de Aminoácidos , Animais , Clonagem Molecular , Cristalografia por Raios X , Vaga-Lumes , Ligação de Hidrogênio , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/genética , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
J Am Chem Soc ; 138(29): 9277-93, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27373320

RESUMO

The shikimate pathway of bacteria, fungi, and plants generates chorismate, which is drawn into biosynthetic pathways that form aromatic amino acids and other important metabolites, including folates, menaquinone, and siderophores. Many of the pathways initiated at this branch point transform chorismate using an MST enzyme. The MST enzymes (menaquinone, siderophore, and tryptophan biosynthetic enzymes) are structurally homologous and magnesium-dependent, and all perform similar chemical permutations to chorismate by nucleophilic addition (hydroxyl or amine) at the 2-position of the ring, inducing displacement of the 4-hydroxyl. The isomerase enzymes release isochorismate or aminodeoxychorismate as the product, while the synthase enzymes also have lyase activity that displaces pyruvate to form either salicylate or anthranilate. This has led to the hypothesis that the isomerase and lyase activities performed by the MST enzymes are functionally conserved. Here we have developed tailored pre-steady-state approaches to establish the kinetic mechanisms of the isochorismate and salicylate synthase enzymes of siderophore biosynthesis. Our data are centered on the role of magnesium ions, which inhibit the isochorismate synthase enzymes but not the salicylate synthase enzymes. Prior structural data have suggested that binding of the metal ion occludes access or egress of substrates. Our kinetic data indicate that for the production of isochorismate, a high magnesium ion concentration suppresses the rate of release of product, accounting for the observed inhibition and establishing the basis of the ordered-addition kinetic mechanism. Moreover, we show that isochorismate is channeled through the synthase reaction as an intermediate that is retained in the active site by the magnesium ion. Indeed, the lyase-active enzyme has 3 orders of magnitude higher affinity for the isochorismate complex relative to the chorismate complex. Apparent negative-feedback inhibition by ferrous ions is documented at nanomolar concentrations, which is a potentially physiologically relevant mode of regulation for siderophore biosynthesis in vivo.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Magnésio/metabolismo , Sideróforos/biossíntese , Triptofano/biossíntese , Vitamina K 2/metabolismo , Sítios de Ligação , Domínio Catalítico , Ácido Corísmico/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica
3.
Nature ; 529(7585): 235-8, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26762461

RESUMO

Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs). During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases.


Assuntos
Acinetobacter baumannii/enzimologia , Escherichia coli/enzimologia , Holoenzimas/química , Peptídeo Sintases/química , Biocatálise , Proteínas de Transporte/metabolismo , Coenzimas/metabolismo , Cristalografia por Raios X , Holoenzimas/metabolismo , Modelos Moleculares , Panteteína/análogos & derivados , Panteteína/metabolismo , Peptídeo Sintases/metabolismo , Estrutura Terciária de Proteína
4.
Proteins ; 82(10): 2691-702, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24975514

RESUMO

Nonribosomal peptide synthetases (NRPSs) are multimodular proteins capable of producing important peptide natural products. Using an assembly line process, the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation-PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C-terminal subdomain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Modelos Moleculares , Complexos Multienzimáticos/química , Peptídeo Sintases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Biologia Computacional , Sequência Conservada , Bases de Dados de Proteínas , Enterobactina/biossíntese , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lisina/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Prolina/química , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Software
5.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1482-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897471

RESUMO

The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain-carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.


Assuntos
Proteínas de Escherichia coli/química , Hidrolases/química , Ligases/química , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Cristalização/métodos , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Ligases/genética , Ligases/metabolismo , Modelos Moleculares , Peptídeo Sintases/genética , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Biochemistry ; 51(33): 6493-5, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22852753

RESUMO

Beetle luciferases catalyze a two-step reaction that includes the initial adenylation of the luciferin substrate, followed by an oxidative decarboxylation that ultimately produces light. Evidence for homologous acyl-CoA synthetases supports a domain alternation catalytic mechanism in which these enzymes' C-terminal domain rotates by ~140° to adopt two conformations that are used to catalyze the two partial reactions. While many structures exist of acyl-CoA synthetases in both conformations, to date only biochemical evidence supports domain alternation with luciferase. We have determined the structure of a cross-linked luciferase enzyme that is trapped in the second conformation. This new structure supports the role of the second catalytic conformation and provides insights into the biochemical mechanism of the luciferase oxidative step.


Assuntos
Luciferases de Vaga-Lume/química , Monofosfato de Adenosina/metabolismo , Sítios de Ligação , Catálise , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Cristalografia por Raios X , Luciferases de Vaga-Lume/metabolismo , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
7.
Chem Biol ; 19(2): 188-98, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22365602

RESUMO

Nonribosomal peptide synthetases (NRPSs) are modular proteins that produce peptide antibiotics and siderophores. These enzymes act as catalytic assembly lines where substrates, covalently bound to integrated carrier domains, are delivered to adjacent catalytic domains. The carrier domains are initially loaded by adenylation domains, which use two distinct conformations to catalyze sequentially the adenylation of the substrate and the thioesterification of the pantetheine cofactor. We have used a mechanism-based inhibitor to determine the crystal structure of an engineered adenylation-carrier domain protein illustrating the intermolecular interaction between the adenylation and carrier domains. This structure enabled directed mutations to improve the interaction between nonnative partner proteins. Comparison with prior NRPS adenylation domain structures provides insights into the assembly line dynamics of these modular enzymes.


Assuntos
Peptídeo Sintases/química , Simulação por Computador , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Cinética , Ligases/química , Ligases/genética , Ligases/metabolismo , Mutação , Peptídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
8.
Structure ; 17(12): 1549-1550, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20004157

RESUMO

Bacteria utilize multiple strategies to circumvent antibiotics, producing broad specificity exporters or enzymes that catalyze the modification of either antibiotics or their targets. A report in this issue of Structure provides the structural and catalytic mechanisms of LinB, an adenylyltransferase of E. faecium that confers resistance to the lincosamide antibiotic clindamycin.


Assuntos
Antibacterianos/farmacologia , Clindamicina/farmacologia , Resistência Microbiana a Medicamentos/genética , Enterococcus faecium/efeitos dos fármacos , Antibacterianos/química , Clindamicina/química , Modelos Moleculares
9.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 7): 734-40, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16790929

RESUMO

The Escherichia coli enterobactin synthetic cluster is composed of six proteins, EntA-EntF, that form the enterobactin molecule from three serine molecules and three molecules of 2,3-dihydroxybenzoic acid (DHB). EntC, EntB and EntA catalyze the three-step synthesis of DHB from chorismate. EntA is a member of the short-chain oxidoreductase (SCOR) family of proteins and catalyzes the final step in DHB synthesis, the NAD+-dependent oxidation of 2,3-dihydro-2,3-dihydroxybenzoic acid to DHB. The structure of EntA has been determined by multi-wavelength anomalous dispersion methods. Here, the 2.0 A crystal structure of EntA in the unliganded form is presented. Analysis of the structure in light of recent structural and bioinformatic analysis of other members of the SCOR family provides insight into the residues involved in cofactor and substrate binding.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Hidroxibenzoatos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Sítios de Ligação , Dimerização , Enterobactina/química , Enterobactina/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA