Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
3.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593805

RESUMO

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Assuntos
Dano ao DNA , Replicação do DNA , RecQ Helicases , Homeostase do Telômero , Telômero , RecQ Helicases/metabolismo , RecQ Helicases/genética , Humanos , Telômero/metabolismo , Telômero/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimologia , Síndrome de Bloom/patologia , Linhagem Celular Tumoral
4.
Nat Commun ; 15(1): 2743, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548768

RESUMO

Overexpression of BCL-xL and BCL-2 play key roles in tumorigenesis and cancer drug resistance. Advances in PROTAC technology facilitated recent development of the first BCL-xL/BCL-2 dual degrader, 753b, a VHL-based degrader with improved potency and reduced toxicity compared to previous small molecule inhibitors. Here, we determine crystal structures of VHL/753b/BCL-xL and VHL/753b/BCL-2 ternary complexes. The two ternary complexes exhibit markedly different architectures that are accompanied by distinct networks of interactions at the VHL/753b-linker/target interfaces. The importance of these interfacial contacts is validated via functional analysis and informed subsequent rational and structure-guided design focused on the 753b linker and BCL-2/BCL-xL warhead. This results in the design of a degrader, WH244, with enhanced potency to degrade BCL-xL/BCL-2 in cells. Using biophysical assays followed by in cell activities, we are able to explain the enhanced target degradation of BCL-xL/BCL-2 in cells. Most PROTACs are empirically designed and lack structural studies, making it challenging to understand their modes of action and specificity. Our work presents a streamlined approach that combines rational design and structure-based insights backed with cell-based studies to develop effective PROTAC-based cancer therapeutics.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína bcl-X/metabolismo
5.
Cell Rep ; 43(1): 113637, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175749

RESUMO

TREX2, a 3'-5' exonuclease, is a part of the DNA damage tolerance (DDT) pathway that stabilizes replication forks (RFs) by ubiquitinating PCNA along with the ubiquitin E3 ligase RAD18 and other DDT factors. Mismatch repair (MMR) corrects DNA polymerase errors, including base mismatches and slippage. Here we demonstrate that TREX2 deletion reduces mutations in cells upon exposure to genotoxins, including those that cause base lesions and DNA polymerase slippage. Importantly, we show that TREX2 generates most of the spontaneous mutations in MMR-mutant cells derived from mice and people. TREX2-induced mutagenesis is dependent on the nuclease and DNA-binding attributes of TREX2. RAD18 deletion also reduces spontaneous mutations in MMR-mutant cells, albeit to a lesser degree. Inactivation of both MMR and TREX2 additively increases RF stalls, while it decreases DNA breaks, consistent with a synthetic phenotype.


Assuntos
DNA Polimerase Dirigida por DNA , Mutagênicos , Humanos , Camundongos , Animais , Mutagênese , DNA Polimerase Dirigida por DNA/metabolismo , Mutação , Ubiquitina/metabolismo , Replicação do DNA , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Fosfoproteínas/genética , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Cell Rep ; 43(1): 113610, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165804

RESUMO

Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Ubiquitinação , Reparo do DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dano ao DNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
7.
J Biol Chem ; 300(1): 105572, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110032

RESUMO

Mutations in, or deficiency of, fragile X messenger ribonucleoprotein (FMRP) is responsible for the Fragile X syndrome (FXS), the most common cause for inherited intellectual disability. FMRP is a nucleocytoplasmic protein, primarily characterized as a translation repressor with poorly understood nuclear function(s). We recently reported that FXS patient cells lacking FMRP sustain higher level of DNA double-strand breaks (DSBs) than normal cells, specifically at sequences prone to forming R-loops, a phenotype further exacerbated by DNA replication stress. Moreover, expression of FMRP, and not an FMRPI304N mutant known to cause FXS, reduced R-loop-associated DSBs. We subsequently reported that recombinant FMRP directly binds R-loops, primarily through the carboxyl terminal intrinsically disordered region. Here, we show that FMRP directly interacts with an RNA helicase, DHX9. This interaction, which is mediated by the amino terminal structured domain of FMRP, is reduced with FMRPI304N. We also show that FMRP inhibits DHX9 helicase activity on RNA:DNA hybrids and the inhibition is also dependent on the amino terminus. Furthermore, the FMRPI304N mutation causes both FMRP and DHX9 to persist on the chromatin in replication stress. These results suggest an antagonistic relationship between FMRP and DHX9 at the chromatin, where their proper interaction leads to dissociation of both proteins from the fully resolved R-loop. We propose that the absence or the loss of function of FMRP leads to persistent presence of DHX9 or both proteins, respectively, on the unresolved R-loop, ultimately leading to DSBs. Our study sheds new light on our understanding of the genome functions of FMRP.


Assuntos
RNA Helicases DEAD-box , Replicação do DNA , Proteína do X Frágil da Deficiência Intelectual , Proteínas de Neoplasias , Estresse Fisiológico , Humanos , Cromatina/genética , Cromatina/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA/biossíntese , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Hibridização de Ácido Nucleico , Estruturas R-Loop , RNA/química , RNA/metabolismo
8.
Nucleic Acids Res ; 51(22): 12224-12241, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953292

RESUMO

BRCA1-deficient cells have increased IRE1 RNase, which degrades multiple microRNAs. Reconstituting expression of one of these, miR-4638-5p, resulted in synthetic lethality in BRCA1-deficient cancer cells. We found that miR-4638-5p represses expression of TATDN2, a poorly characterized member of the TATD nuclease family. We discovered that human TATDN2 has RNA 3' exonuclease and endonuclease activity on double-stranded hairpin RNA structures. Given the cleavage of hairpin RNA by TATDN2, and that BRCA1-deficient cells have difficulty resolving R-loops, we tested whether TATDN2 could resolve R-loops. Using in vitro biochemical reconstitution assays, we found TATDN2 bound to R-loops and degraded the RNA strand but not DNA of multiple forms of R-loops in vitro in a Mg2+-dependent manner. Mutations in amino acids E593 and E705 predicted by Alphafold-2 to chelate an essential Mg2+ cation completely abrogated this R-loop resolution activity. Depleting TATDN2 increased cellular R-loops, DNA damage and chromosomal instability. Loss of TATDN2 resulted in poor replication fork progression in the presence of increased R-loops. Significantly, we found that TATDN2 is essential for survival of BRCA1-deficient cancer cells, but much less so for cognate BRCA1-repleted cancer cells. Thus, we propose that TATDN2 is a novel target for therapy of BRCA1-deficient cancers.


Assuntos
Neoplasias , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Replicação do DNA , Instabilidade Genômica , Magnésio , MicroRNAs/genética , Neoplasias/genética , Estruturas R-Loop
9.
Mol Cell ; 83(20): 3707-3719.e5, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37827159

RESUMO

R-loops, which consist of a DNA-RNA hybrid and a displaced DNA strand, are known to threaten genome integrity. To counteract this, different mechanisms suppress R-loop accumulation by either preventing the hybridization of RNA with the DNA template (RNA biogenesis factors), unwinding the hybrid (DNA-RNA helicases), or degrading the RNA moiety of the R-loop (type H ribonucleases [RNases H]). Thus far, RNases H are the only nucleases known to cleave DNA-RNA hybrids. Now, we show that the RNase DICER also resolves R-loops. Biochemical analysis reveals that DICER acts by specifically cleaving the RNA within R-loops. Importantly, a DICER RNase mutant impaired in R-loop processing causes a strong accumulation of R-loops in cells. Our results thus not only reveal a function of DICER as an R-loop resolvase independent of DROSHA but also provide evidence for the role of multi-functional RNA processing factors in the maintenance of genome integrity in higher eukaryotes.


Assuntos
Estruturas R-Loop , Ribonucleases , Humanos , Estruturas R-Loop/genética , Ribonucleases/genética , RNA/genética , DNA , Replicação do DNA , DNA Helicases/genética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Instabilidade Genômica
10.
Nat Commun ; 14(1): 4786, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553340

RESUMO

ISG15 plays a crucial role in the innate immune response and has been well-studied due to its antiviral activity and regulation of signal transduction, apoptosis, and autophagy. ISG15 is a ubiquitin-like protein that is activated by an E1 enzyme (Uba7) and transferred to a cognate E2 enzyme (UBE2L6) to form a UBE2L6-ISG15 intermediate that functions with E3 ligases that catalyze conjugation of ISG15 to target proteins. Despite its biological importance, the molecular basis by which Uba7 catalyzes ISG15 activation and transfer to UBE2L6 is unknown as there is no available structure of Uba7. Here, we present cryo-EM structures of human Uba7 in complex with UBE2L6, ISG15 adenylate, and ISG15 thioester intermediate that are poised for catalysis of Uba7-UBE2L6-ISG15 thioester transfer. Our structures reveal a unique overall architecture of the complex compared to structures from the ubiquitin conjugation pathway, particularly with respect to the location of ISG15 thioester intermediate. Our structures also illuminate the molecular basis for Uba7 activities and for its exquisite specificity for ISG15 and UBE2L6. Altogether, our structural, biochemical, and human cell-based data provide significant insights into the functions of Uba7, UBE2L6, and ISG15 in cells.


Assuntos
Citocinas , Enzimas de Conjugação de Ubiquitina , Humanos , Citocinas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Microscopia Crioeletrônica , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
11.
Nucleic Acids Res ; 51(16): 8643-8662, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439356

RESUMO

Environmental agents like ionizing radiation (IR) and chemotherapeutic drugs can cause severe damage to the DNA, often in the form of double-strand breaks (DSBs). Remaining unrepaired, DSBs can lead to chromosomal rearrangements, and cell death. One major error-free pathway to repair DSBs is homologous recombination repair (HRR). Tousled-like kinase 1 (TLK1), a Ser/Thr kinase that regulates the DNA damage checkpoint, has been found to interact with RAD54, a central DNA translocase in HRR. To determine how TLK1 regulates RAD54, we inhibited or depleted TLK1 and tested how this impacts HRR in human cells using a ISce-I-GR-DsRed fused reporter endonuclease. Our results show that TLK1 phosphorylates RAD54 at three threonines (T41, T59 and T700), two of which are located within its N-terminal domain (NTD) and one is located within its C-terminal domain (CTD). Phosphorylation at both T41 and T59 supports HRR and protects cells from DNA DSB damage. In contrast, phosphorylation of T700 leads to impaired HRR and engenders no protection to cells from cytotoxicity and rather results in repair delay. Further, our work enlightens the effect of RAD54-T700 (RAD54-CTD) phosphorylation by TLK1 in mammalian system and reveals a new site of interaction with RAD51.


Assuntos
Reparo do DNA , Reparo de DNA por Recombinação , Animais , Humanos , Fosforilação , Dano ao DNA , DNA/metabolismo , Rad51 Recombinase/metabolismo , Recombinação Homóloga , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
12.
Nature ; 619(7970): 475-486, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468584

RESUMO

Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.


Assuntos
Dano ao DNA , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , Ácidos Nucleicos , Humanos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Reparo do DNA , Imunoterapia/métodos , Imunoterapia/tendências , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Ácidos Nucleicos/metabolismo , Replicação do DNA , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mutação , Biomarcadores Tumorais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
13.
Nature ; 619(7968): 201-208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316655

RESUMO

Break-induced telomere synthesis (BITS) is a RAD51-independent form of break-induced replication that contributes to alternative lengthening of telomeres1,2. This homology-directed repair mechanism utilizes a minimal replisome comprising proliferating cell nuclear antigen (PCNA) and DNA polymerase-δ to execute conservative DNA repair synthesis over many kilobases. How this long-tract homologous recombination repair synthesis responds to complex secondary DNA structures that elicit replication stress remains unclear3-5. Moreover, whether the break-induced replisome orchestrates additional DNA repair events to ensure processivity is also unclear. Here we combine synchronous double-strand break induction with proteomics of isolated chromatin segments (PICh) to capture the telomeric DNA damage response proteome during BITS1,6. This approach revealed a replication stress-dominated response, highlighted by repair synthesis-driven DNA damage tolerance signalling through RAD18-dependent PCNA ubiquitination. Furthermore, the SNM1A nuclease was identified as the major effector of ubiquitinated PCNA-dependent DNA damage tolerance. SNM1A recognizes the ubiquitin-modified break-induced replisome at damaged telomeres, and this directs its nuclease activity to promote resection. These findings show that break-induced replication orchestrates resection-dependent lesion bypass, with SNM1A nuclease activity serving as a critical effector of ubiquitinated PCNA-directed recombination in mammalian cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Telômero , Moldes Genéticos , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mamíferos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteômica , Rad51 Recombinase/metabolismo , Telômero/genética , Telômero/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Nature ; 619(7970): 640-649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344589

RESUMO

Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Complexos Multiproteicos , Humanos , Microscopia Crioeletrônica , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Neoplasias/genética , Nucleoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Especificidade por Substrato
15.
Cells ; 12(9)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37174684

RESUMO

Eukaryotic cells maintain cellular fitness by employing well-coordinated and evolutionarily conserved processes that negotiate stress induced by internal or external environments. These processes include the unfolded protein response, autophagy, endoplasmic reticulum-associated degradation (ERAD) of unfolded proteins and altered mitochondrial functions that together constitute the ER stress response. Here, we show that the RNA demethylase ALKBH5 regulates the crosstalk among these processes to maintain normal ER function. We demonstrate that ALKBH5 regulates ER homeostasis by controlling the expression of ER lipid raft associated 1 (ERLIN1), which binds to the activated inositol 1, 4, 5,-triphosphate receptor and facilitates its degradation via ERAD to maintain the calcium flux between the ER and mitochondria. Using functional studies and electron microscopy, we show that ALKBH5-ERLIN-IP3R-dependent calcium signaling modulates the activity of AMP kinase, and consequently, mitochondrial biogenesis. Thus, these findings reveal that ALKBH5 serves an important role in maintaining ER homeostasis and cellular fitness.


Assuntos
Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Homeostase
16.
J Biol Chem ; 299(6): 104817, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178921

RESUMO

Pif1 is a broadly conserved helicase that is essential for genome integrity and participates in numerous aspects of DNA metabolism, including telomere length regulation, Okazaki fragment maturation, replication fork progression through difficult-to-replicate sites, replication fork convergence, and break-induced replication. However, details of its translocation properties and the importance of amino acids residues implicated in DNA binding remain unclear. Here, we use total internal reflection fluorescence microscopy with single-molecule DNA curtain assays to directly observe the movement of fluorescently tagged Saccharomyces cerevisiae Pif1 on single-stranded DNA (ssDNA) substrates. We find that Pif1 binds tightly to ssDNA and translocates very rapidly (∼350 nucleotides per second) in the 5'→3' direction over relatively long distances (∼29,500 nucleotides). Surprisingly, we show the ssDNA-binding protein replication protein A inhibits Pif1 activity in both bulk biochemical and single-molecule measurements. However, we demonstrate Pif1 can strip replication protein A from ssDNA, allowing subsequent molecules of Pif1 to translocate unimpeded. We also assess the functional attributes of several Pif1 mutations predicted to impair contact with the ssDNA substrate. Taken together, our findings highlight the functional importance of these amino acid residues in coordinating the movement of Pif1 along ssDNA.


Assuntos
DNA de Cadeia Simples , Proteínas de Saccharomyces cerevisiae , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Nucleotídeos/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
NAR Cancer ; 5(1): zcac044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683914

RESUMO

Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.

18.
Nat Commun ; 14(1): 432, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702902

RESUMO

The tumor suppressor BRCA2 participates in DNA double-strand break repair by RAD51-dependent homologous recombination and protects stressed DNA replication forks from nucleolytic attack. We demonstrate that the C-terminal Recombinase Binding (CTRB) region of BRCA2, encoded by gene exon 27, harbors a DNA binding activity. CTRB alone stimulates the DNA strand exchange activity of RAD51 and permits the utilization of RPA-coated ssDNA by RAD51 for strand exchange. Moreover, CTRB functionally synergizes with the Oligonucleotide Binding fold containing DNA binding domain and BRC4 repeat of BRCA2 in RPA-RAD51 exchange on ssDNA. Importantly, we show that the DNA binding and RAD51 interaction attributes of the CTRB are crucial for homologous recombination and protection of replication forks against MRE11-mediated attrition. Our findings shed light on the role of the CTRB region in genome repair, reveal remarkable functional plasticity of BRCA2, and help explain why deletion of Brca2 exon 27 impacts upon embryonic lethality.


Assuntos
Replicação do DNA , Rad51 Recombinase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo do DNA , Proteína BRCA2/metabolismo , DNA , Recombinação Homóloga
19.
Mol Cell ; 82(21): 4001-4017.e7, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265488

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.


Assuntos
RNA Longo não Codificante , Homeostase do Telômero , Cromatina/genética , Proteômica , Telômero/genética , Telômero/metabolismo , RNA Longo não Codificante/genética , Homeostase
20.
Nat Struct Mol Biol ; 29(9): 848-849, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36071212
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA