Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 62, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882680

RESUMO

BACKGROUND: The freshwater microbiome regulates aquatic ecological functionality, nutrient cycling, pathogenicity, and has the capacity to dissipate and regulate pollutants. Agricultural drainage ditches are ubiquitous in regions where field drainage is necessary for crop productivity, and as such, are first-line receptors of agricultural drainage and runoff. How bacterial communities in these systems respond to environmental and anthropogenic stressors are not well understood. In this study, we carried out a three year study in an agriculturally dominated river basin in eastern Ontario, Canada to explore the spatial and temporal dynamics of the core and conditionally rare taxa (CRT) of the instream bacterial communities using a 16S rRNA gene amplicon sequencing approach. Water samples were collected from nine stream and drainage ditch sites that represented the influence of a range of upstream land uses. RESULTS: The cross-site core and CRT accounted for 5.6% of the total number of amplicon sequence variants (ASVs), yet represented, on average, over 60% of the heterogeneity of the overall bacterial community; hence, well reflected the spatial and temporal microbial dynamics in the water courses. The contribution of core microbiome to the overall community heterogeneity represented the community stability across all sampling sites. CRT was primarily composed of functional taxa involved in nitrogen (N) cycling and was linked to nutrient loading, water levels, and flow, particularly in the smaller agricultural drainage ditches. Both the core and the CRT were sensitive responders to changes in hydrological conditions. CONCLUSIONS: We demonstrate that core and CRT can be considered as holistic tools to explore the temporal and spatial variations of the aquatic microbial community and can be used as sensitive indicators of the health and function of agriculturally dominated water courses. This approach also reduces computational complexity in relation to analyzing the entire microbial community for such purposes.


Assuntos
Agricultura , Rios , RNA Ribossômico 16S/genética , Água Doce , Água
2.
BMC Microbiol ; 19(1): 11, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634926

RESUMO

BACKGROUND: Arcobacter faecis and A. lanthieri are two newly classified species of genus Arcobacter. The prevalence and distribution of virulence, antibiotic resistance and toxin (VAT) genes in these species are required to assess their potential pathogenic health impacts to humans and animals. This study (i) developed species- and gene-specific primer pairs for the detection of six virulence, two antibiotic resistance, and three toxin genes in two target species; (ii) optimized eight single-tube multiplex and three monoplex PCR protocols using the newly developed species- and gene-specific primers; and (iii) conducted specificity and sensitivity evaluations as well as validation of eleven mono- and multiplex PCR assays by testing A. faecis (n= 29) and A. lanthieri (n= 10) strains isolated from various fecal and agricultural water sources to determine the prevalence and distribution of VAT genes and assess the degree of pathogenicity within the two species. RESULTS: Detection of all ten and eleven target VAT genes, and expression of cytolethal distending toxin (cdtA, cdtB and cdtC) genes in A. faecis and A. lanthieri reference strains with high frequency in field isolates suggest that they are potentially pathogenic strains. These findings indicate that these two species can pose a health risk to humans and animals. CONCLUSIONS: The study results show that the developed mono- and multiplex PCR (mPCR) assays are simple, rapid, reliable and sensitive for the simultaneous assessment of the potential pathogenicity and antibiotic resistance profiling of tet(O) and tet(W) genes in these two newly discovered species. Also, these assays can be useful in diagnostic and analytical laboratories to determine the pathotypes and assessment of the virulence and toxin factors associated to human and animal infections.


Assuntos
Arcobacter , Toxinas Bacterianas/genética , Técnicas de Tipagem Bacteriana/métodos , Resistência Microbiana a Medicamentos/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Reação em Cadeia da Polimerase , Virulência/genética , Animais , Arcobacter/efeitos dos fármacos , Arcobacter/genética , Arcobacter/patogenicidade , Técnicas de Tipagem Bacteriana/normas , Genes Bacterianos/genética , Infecções por Bactérias Gram-Negativas/diagnóstico , Humanos , Reação em Cadeia da Polimerase Multiplex/normas , Reação em Cadeia da Polimerase/normas , Sensibilidade e Especificidade
3.
Sci Total Environ ; 624: 1586-1597, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929267

RESUMO

This study compared the impact of controlled tile drainage (CD) and freely draining (FD) systems on the prevalence and quantitative real-time PCR-based enumeration of four major pathogens including Arcobacter butzleri, Campylobacter jejuni, Campylobacter coli, and Helicobacter pylori in tile- and groundwater following a fall liquid swine manure (LSM) application on clay loam field plots. Although the prevalence of all target pathogens were detected in CD and FD systems, the loads of A. butzleri, C. jejuni, and C. coli were significantly lower in CD tile-water (p<0.05), in relation to FD tile-water. However, concentrations of A. butzleri were significantly greater in CD than FD tile-water (p<0.05). In shallow groundwater (1.2m depth), concentrations of A. butzleri, C. coli, and H. pylori showed no significant difference between CD and FD plots, while C. jejuni concentrations were significantly higher in FD plots (p<0.05). No impact of CD on the H. pylori was observed since quantitative detection in tile- and groundwater was scarce. Although speculative, H. pylori occurrence may have been related to the application of municipal biosolids four years prior to the LSM experiment. Overall, CD can be used to help minimize off-field export of pathogens into surface waters following manure applications to land, thereby reducing waterborne pathogen exposure risks to humans.


Assuntos
Água Subterrânea/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Microbiologia da Água , Agricultura/métodos , Reação em Cadeia da Polimerase em Tempo Real
4.
Sci Total Environ ; 532: 138-53, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26065824

RESUMO

This work investigated chlortetracycline, tylosin, and tetracycline (plus transformation products), and DNA-based quantitative Campylobacter spp. and Campylobacter tetracycline antibiotic resistant genes (tet(O)) in tile drainage, groundwater, and soil before and following a liquid swine manure (LSM) application on clay loam plots under controlled (CD) and free (FD) tile drainage. Chlortetracycline/tetracycline was strongly bound to manure solids while tylosin dominated in the liquid portion of manure. The chlortetracycline transformation product isochlortetracycline was the most persistent analyte in water. Rhodamine WT (RWT) tracer was mixed with manure and monitored in tile and groundwater. RWT and veterinary antibiotic (VA) concentrations were strongly correlated in water which supported the use of RWT as a surrogate tracer. While CD reduced tile discharge and eliminated application-induced VA movement (via tile) to surface water, total VA mass loading to surface water was not affected by CD. At both CD and FD test plots, the biggest 'flush' of VA mass and highest VA concentrations occurred in response to precipitation received 2d after application, which strongly influenced the flow abatement capacity of CD on account of highly elevated water levels in field initiating overflow drainage for CD systems (when water level <0.3m below surface). VA concentrations in tile and groundwater became very low within 10d following application. Both Campylobacter spp. and Campylobacter tet(O) genes were present in groundwater and soil prior to application, and increased thereafter. Unlike the VA compounds, Campylobacter spp. and Campylobacter tet(O) gene loadings in tile drainage were reduced by CD, in relation to FD.


Assuntos
Antibacterianos/análise , Drenagem Sanitária/métodos , Resistência Microbiana a Medicamentos/genética , Água Subterrânea/microbiologia , Agricultura/métodos , Animais , Campylobacter , Monitoramento Ambiental , Água Subterrânea/química , Esterco , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Poluentes da Água/análise
5.
Appl Environ Microbiol ; 80(12): 3708-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727274

RESUMO

Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization.


Assuntos
Bactérias/isolamento & purificação , Biomarcadores/química , Monitoramento Ambiental , Rios/microbiologia , Rios/virologia , Vírus/isolamento & purificação , Agricultura , Animais , Bactérias/genética , Humanos , Rios/química , Estações do Ano , Vírus/genética , Microbiologia da Água
6.
Appl Environ Microbiol ; 79(20): 6207-19, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913430

RESUMO

Over 1,400 water samples were collected biweekly over 6 years from an intermittent stream protected and unprotected from pasturing cattle. The samples were monitored for host-specific Bacteroidales markers, Cryptosporidium species/genotypes, viruses and coliphages associated with humans or animals, and bacterial zoonotic pathogens. Ruminant Bacteroidales markers did not increase within the restricted cattle access reach of the stream, whereas the ruminant Bacteroidales marker increased significantly in the unrestricted cattle access reach. Human Bacteroidales markers significantly increased downstream of homes where septic issues were documented. Wildlife Bacteroidales markers were detected downstream of the cattle exclusion practice where stream and riparian habitat was protected, but detections decreased after the unrestricted pasture, where the stream and riparian zone was unprotected from livestock. Detection of a large number of human viruses was shown to increase downstream of homes, and similar trends were observed for the human Bacteroidales marker. There was considerable interplay among biomarkers with stream flow, season, and the cattle exclusion practices. There were no to very weak associations with Bacteroidales markers and bacterial, viral, and parasitic pathogens. Overall, discrete sample-by-sample coherence among the different microbial source tracking markers that expressed a similar microbial source was minimal, but spatial trends were physically meaningful in terms of land use (e.g., beneficial management practice) effects on sources of fecal pollution.


Assuntos
Bacteroidetes/isolamento & purificação , Cryptosporidium/isolamento & purificação , Rios/microbiologia , Rios/virologia , Vírus/isolamento & purificação , Poluição da Água , Animais , Bacteroidetes/classificação , Bovinos , Humanos , Rios/parasitologia , Vírus/classificação
7.
J Environ Qual ; 42(3): 881-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673956

RESUMO

This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water.


Assuntos
Esterco , Água , Agricultura , Drenagem , Monitoramento Ambiental , Água Subterrânea , Esterco/microbiologia , Movimentos da Água
8.
Appl Environ Microbiol ; 79(2): 434-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124241

RESUMO

Nearly 690 raw surface water samples were collected during a 6-year period from multiple watersheds in the South Nation River basin, Ontario, Canada. Cryptosporidium oocysts in water samples were enumerated, sequenced, and genotyped by detailed phylogenetic analysis. The resulting species and genotypes were assigned to broad, known host and human infection risk classes. Wildlife/unknown, livestock, avian, and human host classes occurred in 21, 13, 3, and <1% of sampled surface waters, respectively. Cryptosporidium andersoni was the most commonly detected livestock species, while muskrat I and II genotypes were the most dominant wildlife genotypes. The presence of Giardia spp., Salmonella spp., Campylobacter spp., and Escherichia coli O157:H7 was evaluated in all water samples. The greatest significant odds ratios (odds of pathogen presence when host class is present/odds of pathogen presence when host class is absent) for Giardia spp., Campylobacter spp., and Salmonella spp. in water were associated, respectively, with livestock (odds ratio of 3.1), avian (4.3), and livestock (9.3) host classes. Classification and regression tree analyses (CART) were used to group generalized host and human infection risk classes on the basis of a broad range of environmental and land use variables while tracking cooccurrence of zoonotic pathogens in these groupings. The occurrence of livestock-associated Cryptosporidium was most strongly related to agricultural water pollution in the fall (conditions also associated with elevated odds ratios of other zoonotic pathogens occurring in water in relation to all sampling conditions), whereas wildlife/unknown sources of Cryptosporidium were geospatially associated with smaller watercourses where urban/rural development was relatively lower. Conditions that support wildlife may not necessarily increase overall human infection risks associated with Cryptosporidium since most Cryptosporidium genotypes classed as wildlife in this study (e.g., muskrat I and II genotype) do not pose significant infection risks to humans. Consequently, from a human health perspective, land use practices in agricultural watersheds that create opportunities for wildlife to flourish should not be rejected solely on the basis of their potential to increase relative proportions of wildlife fecal contamination in surface water. The present study suggests that mitigating livestock fecal pollution in surface water in this region would likely reduce human infection risks associated with Cryptosporidium and other zoonotic pathogens.


Assuntos
Cryptosporidium/classificação , Cryptosporidium/isolamento & purificação , Variação Genética , Filogeografia , Água/parasitologia , Animais , Animais Selvagens/parasitologia , Bactérias/isolamento & purificação , Criptosporidiose/epidemiologia , Criptosporidiose/transmissão , Cryptosporidium/genética , Genótipo , Giardia/isolamento & purificação , Humanos , Ontário , Carga Parasitária , Medição de Risco , Análise Espaço-Temporal , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA