Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1227164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37800145

RESUMO

Background: Women with Turner syndrome (TS) (45,X and related karyotypes) have an increased prevalence of conditions such as diabetes mellitus, obesity, hypothyroidism, autoimmunity, hypertension, and congenital cardiovascular anomalies (CCA). Whilst the risk of developing these co-morbidities may be partly related to haploinsufficiency of key genes on the X chromosome, other mechanisms may be involved. Improving our understanding of underlying processes is important to develop personalized approaches to management. Objective: We investigated whether: 1) global genetic variability differs in women with TS, which might contribute to co-morbidities; 2) common variants in X genes - on the background of haploinsufficiency - are associated with phenotype (a "two-hit" hypothesis); 3) the previously reported association of autosomal TIMP3 variants with CCA can be replicated. Methods: Whole exome sequencing was undertaken in leukocyte DNA from 134 adult women with TS and compared to 46,XX controls (n=23), 46,XX women with primary ovarian insufficiency (n=101), and 46,XY controls (n=11). 1) Variability in autosomal and X chromosome genes was analyzed for all individuals; 2) the relation between common X chromosome variants and the long-term phenotypes listed above was investigated in a subgroup of women with monosomy X; 3) TIMP3 variance was investigated in relation to CCA. Results: Standard filtering identified 6,457,085 autosomal variants and 126,335 X chromosome variants for the entire cohort, whereas a somatic variant pipeline identified 16,223 autosomal and 477 X chromosome changes. 1) Overall exome variability of autosomal genes was similar in women with TS and control/comparison groups, whereas X chromosome variants were proportionate to the complement of X chromosome material; 2) when adjusted for multiple comparisons, no X chromosome gene/variants were strongly enriched in monosomy X women with key phenotypes compared to monosomy X women without these conditions, although several variants of interest emerged; 3) an association between TIMP3 22:32857305:C-T and CCA was found (CCA 13.6%; non-CCA 3.4%, p<0.02). Conclusions: Women with TS do not have an excess of genetic variability in exome analysis. No obvious X-chromosome variants driving phenotype were found, but several possible genes/variants of interest emerged. A reported association between autosomal TIMP3 variance and congenital cardiac anomalies was replicated.


Assuntos
Diabetes Mellitus , Síndrome de Turner , Adulto , Humanos , Feminino , Síndrome de Turner/genética , Cariotipagem , Autoimunidade , Fenótipo
2.
JCI Insight ; 8(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37440461

RESUMO

The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.


Assuntos
Córtex Suprarrenal , Aldosterona , Recém-Nascido , Humanos , Aldosterona/metabolismo , Hidrocortisona/metabolismo , Glândulas Suprarrenais/metabolismo , Esteroides , Proteínas de Homeodomínio/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 953707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060959

RESUMO

Background: Heterozygous de novo variants in SAMD9 cause MIRAGE syndrome, a complex multisystem disorder involving Myelodysplasia, Infection, Restriction of growth, Adrenal hypoplasia, Genital phenotypes, and Enteropathy. The range of additional clinical associations is expanding and includes disrupted placental development, poor post-natal growth and endocrine features. Increasingly, milder phenotypic features such as hypospadias in small for gestational age (SGA) boys and normal adrenal function are reported. Some children present with isolated myelodysplastic syndrome (MDS/monosomy 7) without MIRAGE features. Objective: We aimed to investigate: 1) the range of reported SAMD9 variants, clinical features, and possible genotype-phenotype correlations; 2) whether SAMD9 disruption affects placental function and leads to pregnancy loss/recurrent miscarriage (RM); 3) and if pathogenic variants are associated with isolated fetal growth restriction (FGR). Methods: Published data were analyzed, particularly reviewing position/type of variant, pregnancy, growth data, and associated endocrine features. Genetic analysis of SAMD9 was performed in products of conception (POC, n=26), RM couples, (couples n=48; individuals n=96), children with FGR (n=44), SGA (n=20), and clinical Silver-Russell Syndrome (SRS, n=8), (total n=194). Results: To date, SAMD9 variants are reported in 116 individuals [MDS/monosomy 7, 64 (55.2%); MIRAGE, 52 (44.8%)]. Children with MIRAGE features are increasingly reported without an adrenal phenotype (11/52, 21.2%). Infants without adrenal dysfunction were heavier at birth (median 1515 g versus 1020 g; P < 0.05) and born later (median 34.5 weeks versus 31.0; P < 0.05) compared to those with adrenal insufficiency. In MIRAGE patients, hypospadias is a common feature. Additional endocrinopathies include hypothyroidism, hypo- and hyper-glycemia, short stature and panhypopituitarism. Despite this increasing range of phenotypes, genetic analysis did not reveal any likely pathogenic variants/enrichment of specific variants in SAMD9 in the pregnancy loss/growth restriction cohorts studied. Conclusion: MIRAGE syndrome is more phenotypically diverse than originally reported and includes growth restriction and multisystem features, but without adrenal insufficiency. Endocrinopathies might be overlooked or develop gradually, and may be underreported. As clinical features including FGR, severe infections, anemia and lung problems can be non-specific and are often seen in neonatal medicine, SAMD9-associated conditions may be underdiagnosed. Reaching a specific diagnosis of MIRAGE syndrome is critical for personalized management.


Assuntos
Insuficiência Adrenal , Hipospadia , Síndromes Mielodisplásicas , Insuficiência Adrenal/complicações , Insuficiência Adrenal/genética , Deleção Cromossômica , Cromossomos Humanos Par 7 , Feminino , Retardo do Crescimento Fetal/genética , Humanos , Hipospadia/complicações , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/genética , Fenótipo , Placenta , Gravidez , Síndrome
4.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35138268

RESUMO

Primary ovarian insufficiency (POI) affects 1% of women and carries significant medical and psychosocial sequelae. Approximately 10% of POI has a defined genetic cause, with most implicated genes relating to biological processes involved in early fetal ovary development and function. Recently, Ythdc2, an RNA helicase and N6-methyladenosine reader, has emerged as a regulator of meiosis in mice. Here, we describe homozygous pathogenic variants in YTHDC2 in 3 women with early-onset POI from 2 families: c. 2567C>G, p.P856R in the helicase-associated (HA2) domain and c.1129G>T, p.E377*. We demonstrated that YTHDC2 is expressed in the developing human fetal ovary and is upregulated in meiotic germ cells, together with related meiosis-associated factors. The p.P856R variant resulted in a less flexible protein that likely disrupted downstream conformational kinetics of the HA2 domain, whereas the p.E377* variant truncated the helicase core. Taken together, our results reveal that YTHDC2 is a key regulator of meiosis in humans and pathogenic variants within this gene are associated with POI.


Assuntos
Insuficiência Ovariana Primária , RNA Helicases , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Feminino , Humanos , Meiose , Insuficiência Ovariana Primária/genética , RNA Helicases/genética
5.
Genet Med ; 24(2): 384-397, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906446

RESUMO

PURPOSE: We aimed to investigate the molecular basis underlying a novel phenotype including hypopituitarism associated with primary ovarian insufficiency. METHODS: We used next-generation sequencing to identify variants in all pedigrees. Expression of Rnpc3/RNPC3 was analyzed by in situ hybridization on murine/human embryonic sections. CRISPR/Cas9 was used to generate mice carrying the p.Leu483Phe pathogenic variant in the conserved murine Rnpc3 RRM2 domain. RESULTS: We described 15 patients from 9 pedigrees with biallelic pathogenic variants in RNPC3, encoding a specific protein component of the minor spliceosome, which is associated with a hypopituitary phenotype, including severe growth hormone (GH) deficiency, hypoprolactinemia, variable thyrotropin (also known as thyroid-stimulating hormone) deficiency, and anterior pituitary hypoplasia. Primary ovarian insufficiency was diagnosed in 8 of 9 affected females, whereas males had normal gonadal function. In addition, 2 affected males displayed normal growth when off GH treatment despite severe biochemical GH deficiency. In both mouse and human embryos, Rnpc3/RNPC3 was expressed in the developing forebrain, including the hypothalamus and Rathke's pouch. Female Rnpc3 mutant mice displayed a reduction in pituitary GH content but with no reproductive impairment in young mice. Male mice exhibited no obvious phenotype. CONCLUSION: Our findings suggest novel insights into the role of RNPC3 in female-specific gonadal function and emphasize a critical role for the minor spliceosome in pituitary and ovarian development and function.


Assuntos
Hipopituitarismo , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Hipopituitarismo/genética , Masculino , Camundongos , Proteínas Nucleares/genética , Linhagem , Fenótipo , Insuficiência Ovariana Primária/genética , Prolactina/genética , Proteínas de Ligação a RNA/genética
6.
J Endocr Soc ; 5(8): bvab086, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258490

RESUMO

CONTEXT: Although primary adrenal insufficiency (PAI) in children and young people is often due to congenital adrenal hyperplasia (CAH) or autoimmunity, other genetic causes occur. The relative prevalence of these conditions is poorly understood. OBJECTIVE: We investigated genetic causes of PAI in children and young people over a 25 year period. DESIGN SETTING AND PARTICIPANTS: Unpublished and published data were reviewed for 155 young people in the United Kingdom who underwent genetic analysis for PAI of unknown etiology in three major research centers between 1993 and 2018. We pre-excluded those with CAH, autoimmune, or metabolic causes. We obtained additional data from NR0B1 (DAX-1) clinical testing centers. INTERVENTION AND OUTCOME MEASUREMENTS: Genetic analysis involved a candidate gene approach (1993 onward) or next generation sequencing (NGS; targeted panels, exomes) (2013-2018). RESULTS: A genetic diagnosis was reached in 103/155 (66.5%) individuals. In 5 children the adrenal insufficiency resolved and no genetic cause was found. Pathogenic variants occurred in 11 genes: MC2R (adrenocorticotropin receptor; 30/155, 19.4%), NR0B1 (DAX-1; 7.7%), CYP11A1 (7.7%), AAAS (7.1%), NNT (6.5%), MRAP (4.5%), TXNRD2 (4.5%), STAR (3.9%), SAMD9 (3.2%), CDKN1C (1.3%), and NR5A1/steroidogenic factor-1 (SF-1; 0.6%). Additionally, 51 boys had NR0B1 variants identified through clinical testing. Although age at presentation, treatment, ancestral background, and birthweight can provide diagnostic clues, genetic testing was often needed to define the cause. CONCLUSIONS: PAI in children and young people often has a genetic basis. Establishing the specific etiology can influence management of this lifelong condition. NGS approaches improve the diagnostic yield when many potential candidate genes are involved.

7.
Eur J Endocrinol ; 182(3): K15-K24, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31917682

RESUMO

OBJECTIVE: CYP11A1 mutations cause P450 side-chain cleavage (scc) deficiency, a rare form of congenital adrenal hyperplasia with a wide clinical spectrum. We detail the phenotype and evolution in a male sibship identified by HaloPlex targeted capture array. FAMILY STUDY: The youngest of three brothers from a non-consanguineous Scottish family presented with hyperpigmentation at 3.7 years. Investigation showed grossly impaired glucocorticoid function with ACTH elevation, moderately impaired mineralocorticoid function, and normal external genitalia. The older brothers were found to be pigmented also, with glucocorticoid impairment but normal electrolytes. Linkage studies in 2002 showed that all three brothers had inherited the same critical regions of the maternal X chromosome suggesting an X-linked disorder, but analysis of NR0B1 (DAX-1, adrenal hypoplasia) and ABCD1 (adrenoleukodystrophy) were negative. In 2016, next-generation sequencing revealed compound heterozygosity for the rs6161 variant in CYP11A1 (c.940G>A, p.Glu314Lys), together with a severely disruptive frameshift mutation (c.790_802del, K264Lfs*5). The brothers were stable on hydrocortisone and fludrocortisone replacement, testicular volumes (15-20 mL), and serum testosterone levels (24.7, 33.3, and 27.2 nmol/L) were normal, but FSH (41.2 µ/L) was elevated in the proband. The latter had undergone left orchidectomy for suspected malignancy at the age of 25 years and was attending a fertility clinic for oligospermia. Initial histology was reported as showing nodular Leydig cell hyperplasia. However, histological review using CD56 staining confirmed testicular adrenal rest cell tumour (TART). CONCLUSION: This kinship with partial P450scc deficiency demonstrates the importance of precise diagnosis in primary adrenal insufficiency to ensure appropriate counselling and management, particularly of TART.


Assuntos
Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/deficiência , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Tumor de Resto Suprarrenal/genética , Tumor de Resto Suprarrenal/patologia , Tumor de Resto Suprarrenal/cirurgia , Adulto , Pré-Escolar , Progressão da Doença , Diagnóstico Precoce , Família , Mutação da Fase de Leitura , Doenças Genéticas Ligadas ao Cromossomo X/genética , Glucocorticoides/metabolismo , Terapia de Reposição Hormonal , Humanos , Hiperpigmentação/etiologia , Hiperpigmentação/genética , Masculino , Linhagem , Fenótipo , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Neoplasias Testiculares/cirurgia , Resultado do Tratamento
8.
J Endocr Soc ; 3(12): 2341-2360, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31745530

RESUMO

CONTEXT: The genetic basis of human sex development is slowly being elucidated, and >40 different genetic causes of differences (or disorders) of sex development (DSDs) have now been reported. However, reaching a specific diagnosis using traditional approaches can be difficult, especially in adults where limited biochemical data may be available. OBJECTIVE: We used a targeted next-generation sequencing approach to analyze known and candidate genes for DSDs in individuals with no specific molecular diagnosis. PARTICIPANTS AND DESIGN: We studied 52 adult 46,XY women attending a single-center adult service, who were part of a larger cohort of 400 individuals. Classic conditions such as17ß-hydroxysteroid dehydrogenase deficiency type 3, 5α-reductase deficiency type 2, and androgen insensitivity syndrome were excluded. The study cohort had broad working diagnoses of complete gonadal dysgenesis (CGD) (n = 27) and partially virilized 46,XY DSD (pvDSD) (n = 25), a group that included partial gonadal dysgenesis and those with a broad "partial androgen insensitivity syndrome" label. Targeted sequencing of 180 genes was undertaken. RESULTS: Overall, a likely genetic cause was found in 16 of 52 (30.8%) individuals (22.2% CGD, 40.0% pvDSD). Pathogenic variants were found in sex-determining region Y (SRY; n = 3), doublesex and mab-3-related transcription factor 1 (DMRT1; n = 1), NR5A1/steroidogenic factor-1 (SF-1) (n = 1), and desert hedgehog (DHH; n = 1) in the CGD group, and in NR5A1 (n = 5), DHH (n = 1), and DEAH-box helicase 37 (DHX37; n = 4) in the pvDSD group. CONCLUSIONS: Reaching a specific diagnosis can have clinical implications and provides insight into the role of these proteins in sex development. Next-generation sequencing approaches are invaluable, especially in adult populations or where diagnostic biochemistry is not possible.

9.
J Endocr Soc ; 3(1): 201-221, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30620006

RESUMO

Primary adrenal insufficiency (PAI) is a potentially life-threatening condition that can present with nonspecific features and can be difficult to diagnose. We undertook next generation sequencing in a cohort of children and young adults with PAI of unknown etiology from around the world and identified a heterozygous missense variant (rs6161, c.940G>A, p.Glu314Lys) in CYP11A1 in 19 individuals from 13 different families (allele frequency within undiagnosed PAI in our cohort, 0.102 vs 0.0026 in the Genome Aggregation Database; P < 0.0001). Seventeen individuals harbored a second heterozygous rare disruptive variant in CYP11A1 and two had very rare synonymous changes in trans (c.990G>A, Thr330 = ; c.1173C>T, Ser391 =). Although p.Glu314Lys is predicted to be benign and showed no loss-of-function in an Escherichia coli assay system, in silico and in vitro studies revealed that the rs6161/c.940G>A variant, plus the c.990G>A and c.1173C>T changes, affected splicing and that p.Glu314Lys produces a nonfunctional protein in mammalian cells. Taken together, these findings show that compound heterozygosity involving a relatively common and predicted "benign" variant in CYP11A1 is a major contributor to PAI of unknown etiology, especially in European populations. These observations have implications for personalized management and demonstrate how variants that might be overlooked in standard analyses can be pathogenic when combined with other very rare disruptive changes.

10.
F1000Res ; 8: 90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497289

RESUMO

Background: Cyclin-dependent kinase inhibitor 1C (CDKN1C) is a key negative regulator of cell growth encoded by a paternally imprinted/maternally expressed gene in humans. Loss-of-function variants in CDKN1C are associated with an overgrowth condition (Beckwith-Wiedemann Syndrome) whereas "gain-of-function" variants in CDKN1C that increase protein stability cause growth restriction as part of IMAGe syndrome ( Intrauterine growth restriction, Metaphyseal dysplasia, Adrenal hypoplasia and Genital anomalies). As three families have been reported with CDKN1C mutations who have fetal growth restriction (FGR)/Silver-Russell syndrome (SRS) without adrenal insufficiency, we investigated whether pathogenic variants in CDKN1C could be associated with isolated growth restriction or recurrent loss of pregnancy. Methods: Analysis of published literature was undertaken to review the localisation of variants in CDKN1C associated with IMAGe syndrome or fetal growth restriction. CDKN1C expression in different tissues was analysed in available RNA-Seq data (Human Protein Atlas). Targeted sequencing was used to investigate the critical region of CDKN1C for potential pathogenic variants in SRS (n=66), FGR (n=37), DNA from spontaneous loss of pregnancy (n= 22) and women with recurrent miscarriages (n=78) (total n=203). Results: All published single nucleotide variants associated with IMAGe syndrome are located in a highly-conserved "hot-spot" within the PCNA-binding domain of CDKN1C between codons 272-279. Variants associated with familial growth restriction but normal adrenal function currently affect codons 279 and 281. CDKN1C is highly expressed in the placenta compared to adult tissues, which may contribute to the FGR phenotype and supports a role in pregnancy maintenance. In the patient cohorts studied no pathogenic variants were identified in the PCNA-binding domain of CDKN1C. Conclusion: CDKN1C is a key negative regulator of growth. Variants in a very localised "hot-spot" cause growth restriction, with or without adrenal insufficiency. However, pathogenic variants in this region are not a common cause of isolated fetal growth restriction phenotypes or loss-of-pregnancy/recurrent miscarriages.


Assuntos
Aborto Habitual/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Retardo do Crescimento Fetal/genética , Insuficiência Adrenal/genética , Adulto , Feminino , Humanos , Osteocondrodisplasias/genética , Polimorfismo de Nucleotídeo Único , Gravidez , Anormalidades Urogenitais/genética
11.
J Cardiovasc Dev Dis ; 5(4)2018 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249045

RESUMO

Haploinsufficiency of the T-box transcription factor TBX1 is responsible for many features of 22q11.2 deletion syndrome. Tbx1 is expressed dynamically in the pharyngeal apparatus during mouse development and Tbx1 homozygous mutants display numerous severe defects including abnormal cranial ganglion formation and neural crest cell defects. These abnormalities prompted us to investigate whether parasympathetic (vagal) innervation of the heart was affected in Tbx1 mutant embryos. In this report, we used an allelic series of Tbx1 mouse mutants, embryo tissue explants and cardiac electrophysiology to characterise, in detail, the function of Tbx1 in vagal innervation of the heart. We found that total nerve branch length was significantly reduced in Tbx1+/- and Tbx1neo2/- mutant hearts expressing 50% and 15% levels of Tbx1. We also found that neural crest cells migrated normally to the heart of Tbx1+/-, but not in Tbx1neo2 mutant embryos. In addition, we showed that cranial ganglia IXth and Xth were fused in Tbx1neo2/- but neuronal differentiation appeared intact. Finally, we used telemetry to monitor heart response to carbachol, a cholinergic receptor agonist, and found that heart rate recovered more quickly in Tbx1+/- animals versus controls. We speculate that this condition of decreased parasympathetic drive could result in a pro-arrhythmic substrate in some 22q11.2DS patients.

12.
J Clin Res Pediatr Endocrinol ; 10(1): 68-73, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28739551

RESUMO

Proopiomelanocortin (POMC) deficiency is a rare monogenic disorder with early-onset obesity. Investigation of this entity have increased our insight into the important role of the leptin-melanocortin pathway in energy balance. Here, we present a patient with POMC deficiency due to a homozygous c.206delC mutation in the POMC gene. We discuss the pathogenesis of this condition with emphasis on the crosstalk between hypothalamic and peripheral signals in the development of obesity and the POMC-melanocortin 4 receptors system as a target for therapeutic intervention.


Assuntos
Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/metabolismo , Obesidade/diagnóstico , Obesidade/metabolismo , Pró-Opiomelanocortina/deficiência , Insuficiência Adrenal/genética , Pré-Escolar , Feminino , Humanos , Obesidade/genética , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
13.
J Clin Invest ; 127(5): 1700-1713, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28346228

RESUMO

It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain-containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (-7), deletions of 7q (7q-), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with -7 and 7q- developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized.


Assuntos
Insuficiência Adrenal/congênito , Deleção Cromossômica , Mutação da Fase de Leitura , Haploinsuficiência , Síndromes Mielodisplásicas/genética , Proteínas/genética , Insuficiência Adrenal/genética , Insuficiência Adrenal/mortalidade , Cromossomos Humanos Par 7 , Estudos de Coortes , Mutação da Fase de Leitura/genética , Humanos , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Síndromes Mielodisplásicas/mortalidade
15.
Hum Mol Genet ; 25(16): 3446-3453, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27378692

RESUMO

Cell lineages of the early human gonad commit to one of the two mutually antagonistic organogenetic fates, the testis or the ovary. Some individuals with a 46,XX karyotype develop testes or ovotestes (testicular or ovotesticular disorder of sex development; TDSD/OTDSD), due to the presence of the testis-determining gene, SRY Other rare complex syndromic forms of TDSD/OTDSD are associated with mutations in pro-ovarian genes that repress testis development (e.g. WNT4); however, the genetic cause of the more common non-syndromic forms is unknown. Steroidogenic factor-1 (known as NR5A1) is a key regulator of reproductive development and function. Loss-of-function changes in NR5A1 in 46,XY individuals are associated with a spectrum of phenotypes in humans ranging from a lack of testis formation to male infertility. Mutations in NR5A1 in 46,XX women are associated with primary ovarian insufficiency, which includes a lack of ovary formation, primary and secondary amenorrhoea as well as early menopause. Here, we show that a specific recurrent heterozygous missense mutation (p.Arg92Trp) in the accessory DNA-binding region of NR5A1 is associated with variable degree of testis development in 46,XX children and adults from four unrelated families. Remarkably, in one family a sibling raised as a girl and carrying this NR5A1 mutation was found to have a 46,XY karyotype with partial testicular dysgenesis. These unique findings highlight how a specific variant in a developmental transcription factor can switch organ fate from the ovary to testis in mammals and represents the first missense mutation causing isolated, non-syndromic 46,XX testicular/ovotesticular DSD in humans.


Assuntos
Proteínas de Ligação a DNA/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Insuficiência Ovariana Primária/genética , Desenvolvimento Sexual/genética , Fator Esteroidogênico 1/genética , Adulto , Síndrome de Resistência a Andrógenos/genética , Síndrome de Resistência a Andrógenos/patologia , Linhagem da Célula/genética , Criança , Transtorno 46,XY do Desenvolvimento Sexual/patologia , Feminino , Gônadas/crescimento & desenvolvimento , Gônadas/patologia , Humanos , Cariótipo , Masculino , Mutação de Sentido Incorreto , Ovário/crescimento & desenvolvimento , Ovário/patologia , Linhagem , Insuficiência Ovariana Primária/patologia , Processos de Determinação Sexual , Testículo/crescimento & desenvolvimento , Testículo/patologia
16.
J Clin Endocrinol Metab ; 101(1): 284-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26523528

RESUMO

CONTEXT: Primary adrenal insufficiency (PAI) is a life-threatening condition that is often due to monogenic causes in children. Although congenital adrenal hyperplasia occurs commonly, several other important molecular causes have been reported, often with overlapping clinical and biochemical features. The relative prevalence of these conditions is not known, but making a specific diagnosis can have important implications for management. OBJECTIVE: The objective of the study was to investigate the clinical and molecular genetic characteristics of a nationwide cohort of children with PAI of unknown etiology. DESIGN: A structured questionnaire was used to evaluate clinical, biochemical, and imaging data. Genetic analysis was performed using Haloplex capture and next-generation sequencing. Patients with congenital adrenal hyperplasia, adrenoleukodystrophy, autoimmune adrenal insufficiency, or obvious syndromic PAI were excluded. SETTING: The study was conducted in 19 tertiary pediatric endocrinology clinics. PATIENTS: Ninety-five children (48 females, aged 0-18 y, eight familial) with PAI of unknown etiology participated in the study. RESULTS: A genetic diagnosis was obtained in 77 patients (81%). The range of etiologies was as follows: MC2R (n = 25), NR0B1 (n = 12), STAR (n = 11), CYP11A1 (n = 9), MRAP (n = 9), NNT (n = 7), ABCD1 (n = 2), NR5A1 (n = 1), and AAAS (n = 1). Recurrent mutations occurred in several genes, such as c.560delT in MC2R, p.R451W in CYP11A1, and c.IVS3ds+1delG in MRAP. Several important clinical and molecular insights emerged. CONCLUSION: This is the largest nationwide study of the molecular genetics of childhood PAI undertaken. Achieving a molecular diagnosis in more than 80% of children has important translational impact for counseling families, presymptomatic diagnosis, personalized treatment (eg, mineralocorticoid replacement), predicting comorbidities (eg, neurological, puberty/fertility), and targeting clinical genetic testing in the future.


Assuntos
Insuficiência Adrenal/etiologia , Insuficiência Adrenal/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , DNA/genética , Feminino , Expressão Gênica/genética , Variação Genética/genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Turquia/epidemiologia
17.
Best Pract Res Clin Endocrinol Metab ; 29(4): 607-19, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26303087

RESUMO

DAX-1 (NR0B1) and SF-1 (NR5A1) are two nuclear receptor transcription factors that play a key role in human adrenal and reproductive development. Loss of DAX-1 function is classically associated with X-linked adrenal hypoplasia congenita. This condition typically affects boys and presents as primary adrenal insufficiency in early infancy or childhood, hypogonadotropic hypogonadism at puberty and impaired spermatogenesis. Late onset forms of this condition and variant phenotypes are increasingly recognized. In contrast, disruption of SF-1 only rarely causes adrenal insufficiency, usually in combination with testicular dysgenesis. Variants in SF-1/NR5A1 more commonly cause a spectrum of reproductive phenotypes ranging from 46,XY DSD (partial testicular dysgenesis or reduced androgen production) and hypospadias to male factor infertility or primary ovarian insufficiency. Making a specific diagnosis of DAX-1 or SF-1 associated conditions is important for long-term monitoring of endocrine and reproductive function, appropriate genetic counselling for family members, and for providing appropriate informed support for young people.


Assuntos
Insuficiência Adrenal/genética , Receptor Nuclear Órfão DAX-1/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Fator Esteroidogênico 1/genética , Insuficiência Adrenal/metabolismo , Insuficiência Adrenal/patologia , Receptor Nuclear Órfão DAX-1/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Hipoadrenocorticismo Familiar , Masculino , Mutação , Fenótipo , Fator Esteroidogênico 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA