Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Genomics Proteomics ; 19(4): 503-511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732322

RESUMO

BACKGROUND: The stage of colorectal cancer (CRC) at the day of diagnosis has the greatest influence on survival rate. Thus, for CRC, which is mainly identified as advanced disease, non-invasive, molecular blood or stool tests could boost the diagnosis and lower mortality. Evaluation of miRNA expression levels in serum of patients diagnosed with CRC is a potential tool in early screening. Screening can be supported by machine learning (ML) as a tool for developing a cancer risk predictive model based on genetic data. MATERIALS AND METHODS: miRNA was isolated from the serum of 8 patients diagnosed with CRC and 10 patients from a control group matched for age and sex. The expression of 179 miRNAs was determined using a serum/plasma panel (Exiqon). Determinations were conducted using real-time PCR technique on an Applied Biosystems QuantStudio3 device in 96-well plates. A predictive model was developed through the Azure Machine Learning platform. RESULTS: A wide panel of 29 up-regulated miRNAs in CRC were identified and divided into two subgroups: 1) miRNAs with significantly higher serum level in cancer patients vs. controls (24 miRNAs) and 2) miRNAs detected only in cancer patients and not in controls (5 miRNAs). Re-analysis of published miRNA profiles of CRC tumours or CRC exosomes revealed that only 2 out of 29 miRNAs were up-regulated in all datasets including ours (miR-34a and miR-25-3p). CONCLUSION: Our research suggests the potential role of overexpressed miRNAs as diagnostic or prognostic biomarkers among CRC patients. Such clustering of miRNAs may be a potential direction for discovering new diagnostic panels of cancer (including CRC), especially using ML. The low correspondence between deregulation of miRNAs in serum and tumour tissue revealed in our study confirms previously published reports.


Assuntos
Neoplasias Colorretais , MicroRNAs , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Aprendizado de Máquina , MicroRNAs/genética
3.
Cancers (Basel) ; 13(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671514

RESUMO

Glycolysis is a crucial metabolic process in rapidly proliferating cells such as cancer cells. Phosphofructokinase-1 (PFK-1) is a key rate-limiting enzyme of glycolysis. Its efficiency is allosterically regulated by numerous substances occurring in the cytoplasm. However, the most potent regulator of PFK-1 is fructose-2,6-bisphosphate (F-2,6-BP), the level of which is strongly associated with 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase activity (PFK-2/FBPase-2, PFKFB). PFK-2/FBPase-2 is a bifunctional enzyme responsible for F-2,6-BP synthesis and degradation. Four isozymes of PFKFB (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified. Alterations in the levels of all PFK-2/FBPase-2 isozymes have been reported in different diseases. However, most recent studies have focused on an increased expression of PFKFB3 and PFKFB4 in cancer tissues and their role in carcinogenesis. In this review, we summarize our current knowledge on all PFKFB genes and protein structures, and emphasize important differences between the isoenzymes, which likely affect their kinase/phosphatase activities. The main focus is on the latest reports in this field of cancer research, and in particular the impact of PFKFB3 and PFKFB4 on tumor progression, metastasis, angiogenesis, and autophagy. We also present the most recent achievements in the development of new drugs targeting these isozymes. Finally, we discuss potential combination therapies using PFKFB3 inhibitors, which may represent important future cancer treatment options.

4.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572595

RESUMO

Over the last decades, transcriptome profiling emerged as one of the most powerful approaches in oncology, providing prognostic and predictive utility for cancer management. The development of novel technologies, such as revolutionary next-generation sequencing, enables the identification of cancer biomarkers, gene signatures, and their aberrant expression affecting oncogenesis, as well as the discovery of molecular targets for anticancer therapies. Transcriptomics contribute to a change in the holistic understanding of cancer, from histopathological and organic to molecular classifications, opening a more personalized perspective for tumor diagnostics and therapy. The further advancement on transcriptome profiling may allow standardization and cost reduction of its analysis, which will be the next step for transcriptomics to become a canon of contemporary cancer medicine.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/diagnóstico , Medicina de Precisão , Transcriptoma , Perfilação da Expressão Gênica , Humanos , Oncologia , Neoplasias/genética , Neoplasias/terapia , Prognóstico
5.
Biomed Pharmacother ; 132: 110883, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113417

RESUMO

Curcumin is a turmeric, antioxidative compound, well-known of its anti-cancer properties. Nowadays more and more effort is made in the field of enhancing the efficiency of the anticancer therapies. Combining the photoactive properties of curcumin with the superficial localization of melanoma and photodynamic therapy (PDT) seems to be a promising treatment method. The research focused on the evaluation of the curcumin effectiveness as an anticancer therapeutic agent in the in vitro treatment of melanotic (A375) and amelanotic (C32) melanoma cell lines. Keratinocytes (HaCat) and fibroblasts (HGF) were used to assess the impact of the therapy on the skin tissue. The aim of the study was to investigate the cell death after exposure to light irradiation after preincubation with curcumin. Additionaly the authors analized the interactions between curcumin and the actin cytoskeleton. The cytotoxic effect initiated by curcumin and increased by irradiation confirm the usefulness of the flavonoid in the PDT approach. Depending on curcumin concentration and incubation time, melanoma cells survival rate ranged from: 93.68 % (C32 cell line, 10 µM, 24 h) and 83.47 % (A375 cell line, 10 µM, 24 h) to 8.98 % (C32 cell line, 50 µM, 48 h) and 12.42 % (A375 cell line, 50 µM, 48 h). Moreover, photodynamic therapy with curcumin increased the number of apoptotic and necrotic cells in comparison to incubation with curcumin without irradiation. The study demonstrated that PDT induced caspase-3 overexpression and DNA cleavage in the studied cell lines. The cells revealed decreased proliferation after the therapy due to the actin cytoskeleton rearrangement. Although effective, the therapy remains not selective towards melanoma cells.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Curcumina/farmacologia , Melaninas/metabolismo , Melanócitos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , Necrose , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
6.
Anticancer Res ; 40(5): 2613-2625, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366406

RESUMO

BACKGROUND/AIM: The occurrence of BRAFV600E mutation causes an up-regulation of the B-raf kinase activity leading to the stabilization of hypoxia-inducible factor 1-alpha (HIF-1α) - the promoter of the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) enzyme. The aim of the study was to examine the effect of the (2E)-3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), as an inhibitor of PFKFB3, on human melanoma cells (A375) with endogenous BRAFV600E mutation. MATERIALS AND METHODS: A375 cells were exposed to different concentrations of 3PO and the following tests were performed: docking, cytotoxicity assay, immunocytochemistry staining glucose uptake, clonogenic assay, holotomography imaging, and flow cytometry. RESULTS: Our studies revealed that 3PO presents a dose-dependent and time-independent cytotoxic effect and promotes apoptosis of A375 cells. Furthermore, the obtained data indicate that 3PO induces cell cycle arrest in G1/0 and glucose uptake reduction. CONCLUSION: Taking all together, our research demonstrated a here should be proapoptotic and antiproliferative effect of 3PO on A375 human melanoma cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Melanoma/enzimologia , Fosfofrutoquinase-2/antagonistas & inibidores , Piridinas/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Domínio Catalítico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Glucose/metabolismo , Humanos , Melanoma/patologia , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Fosfofrutoquinase-2/metabolismo , Piridinas/química , Ensaio Tumoral de Célula-Tronco
7.
Nutrients ; 11(6)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242602

RESUMO

Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells' metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.


Assuntos
Antimitóticos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Dieta , Neoplasias/tratamento farmacológico , Inibidores da Topoisomerase/uso terapêutico , Animais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA