Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 72(2): 171-182, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36936876

RESUMO

This study examined the bioactivities and mechanisms of the non-centrifugal cane sugar polyphenols saponarin, schaftoside, and isoschaftoside in the salivary gland and their effects on salivation. In acute isolated C57BL/6N mouse submandibular gland cells, these polyphenols led to a higher increase in intracellular calcium after stimulation with the muscarinic agonist carbachol. Stimulation of these cells with polyphenols enhanced ATP production, aquaporin-5 translocation to the plasma membrane and eliminated intracellular reactive oxygen species generated by H2O2. In addition, phosphorylation of endothelial nitric oxide synthase and increased nitric oxide production in vascular endothelial cells were observed. In vivo administration of these polyphenols to C57BL/6N male mice resulted in significantly increased blood flow (saponarin, p = 0.040; isoschaftoside, p = 0.010) and salivation (saponarin, p = 0.031). A randomized controlled trial showed that intake of non-centrifugal cane sugar significantly increased saliva secretion compared with placebo (p = 0.003). These data suggest that non-centrifugal cane sugar polyphenols affect several pathways that support salivation and increase saliva secretion by enhancing vasodilation. Hence, non-centrifugal cane sugar polyphenols can be expected to maintain saliva secretion and improve reduced saliva flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA