Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-23, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078214

RESUMO

The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.


Macroalgae contain diverse bioactives for food and pharmaceutical applications.Integration of macroalgae into functional foods increases its nutritional value.Surging macroalgae-based foods indicate strong commercial potential.Clinical validation is essential for macroalgae-based products' therapeutic effects.Rigorous quality control ensures safety and compliance in macroalgae applications.

2.
Waste Manag ; 178: 267-279, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422680

RESUMO

Bioponics is a nutrient-recovery technology that transforms nutrient-rich organic waste into plant biomass/bioproducts. Integrating biochar with digestate from anaerobic wastewater treatment process can improve resource recovery while mitigating heavy metal contamination. The overarching goal of this study was to investigate the application of biochar in digestate-based bioponics, focusing on its efficacy in nutrient recovery and heavy metal removal, while also exploring the microbial community dynamics. In this study, biochar was applied at 50 % w/w with 500 g dry weight of digestate during two 28-day crop cycles (uncontrolled pH and pH 5.5) using white stem pak choi (Brassica rapa var. chinensis) as a model crop. The results showed that the digestate provided sufficient phosphorus and nitrogen, supporting plant growth. Biochar amendment improved plant yield and phosphate solubilization and reduced nitrogen loss, especially at the pH 5.5. Furthermore, biochar reduced the heavy metal accumulation in plants, while concentrating these metals in the residual sludge. However, owing to potential non-carcinogenic and carcinogenic health risks, it is still not recommended to directly consume plants cultivated in digestate-based bioponic systems. Additionally, biochar amendment exhibited pronounced impact on the microbial community, promoting microbes responsible for nutrient solubilization and cycling (e.g., Tetrasphaera, Herpetosiphon, Hyphomicrobium, and Pseudorhodoplanes) and heavy metal stabilization (e.g., Leptolinea, Fonticella, Romboutsia, and Desulfurispora) in both the residual sludge and plants. Overall, the addition of biochar enhanced the microbial community and facilitated the metal stabilization and the cycling of nutrients within both residual sludge and root systems, thereby improving the overall efficiency of the bioponics.


Assuntos
Metais Pesados , Esgotos , Carvão Vegetal , Metais Pesados/análise , Nutrientes , Nitrogênio/análise , Interações Microbianas , Solo
3.
J Environ Manage ; 339: 117860, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086642

RESUMO

Food waste is rich in nutrients, such as nitrogen and phosphorus, and can be integrated with bioponics, a closed-loop agricultural system that combines hydroponics with biological nutrient recovery. Vermicompost leachate (VCL) supplementation has been shown to improve the co-composting of organic waste (i.e., compost quality) and the biodegradation of organic compounds. Thus, VCL has high potential for enhancing nutrient availability in bioponics from food waste. However, the understanding of nitrogen and phosphorus availability in food waste-based bioponics is limited, both with and without VCL. In this study, food waste derived from cafeteria vegetable waste was used as the substrate (500 g dry wt./system) in bioponics to grow lettuce (Lactuca sativa L.) for two consecutive cycles (35 days/cycle) without substrate replacement. VCL was applied weekly (1-5% v/v) and compared to the control without VCL. The results showed that the food waste in bioponics provided nitrogen and phosphorus for plant growth (15.5-65.8 g/lettuce head). Organic-degrading and nutrient-transforming bacteria (Hydrogenispora, Clostridium_sensu_stricto_1, Ruminiclostridium_1, Cellvibrio, Thauera, Hydrogenophaga, and Bacillus) were predominantly found in plant roots and residual food waste. VCL addition significantly increased nitrate, phosphate, and chemical oxygen demand levels in bioponics, owing to the nutrients in VCL and the enhancement of keystone microorganisms responsible for organic degradation and nutrient cycling (e.g., Ellin6067, Actinomyces, and Pirellula). These findings suggest that nitrogen, phosphorus, and organic carbon concentrations in an ecosystem of nutrient-transforming and organic-degrading microbes are key in managing nutrient recovery from food waste in bioponics.


Assuntos
Microbiota , Eliminação de Resíduos , Fósforo/metabolismo , Alimentos , Nitrogênio/análise , Solo/química
4.
Bioresour Technol ; 370: 128501, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538958

RESUMO

Anaerobic co-digestion (AcoD) offers several merits such as better digestibility and process stability while enhancing methane yield due to synergistic effects. Operation of an efficient AcoD system, however, requires full comprehension of important operational parameters, such as co-substrates ratio, their composition, volatile fatty acids/alkalinity ratio, organic loading rate, and solids/hydraulic retention time. AcoD process optimization, prediction and control, and early detection of system instability are often difficult to achieve through tedious manual monitoring processes. Recently, artificial intelligence (AI) has emerged as an innovative approach to computational modeling and optimization of the AcoD process. This review discusses AI applications in AcoD process optimization, control, prediction of unknown input/output parameters, and real-time monitoring. Furthermore, the review also compares standalone and hybrid AI algorithms as applied to AcoD. The review highlights future research directions for data preprocessing, model interpretation and validation, and grey-box modeling in AcoD process.


Assuntos
Inteligência Artificial , Reatores Biológicos , Anaerobiose , Metano , Digestão , Biocombustíveis
5.
Bioresour Technol ; 360: 127558, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35780934

RESUMO

Ammonia stress is a commonly encountered issue in anaerobic digestion (AD) process when treating proteinaceous substrates. The enhanced relationship between syntrophic bacteria and methanogens triggered by interspecies electron transfer (IET) stimulation is one of the potential mechanisms for an improved methane yield from the AD plant under ammonia-stressed condition. There is, however, lack of synthesized information on the mechanistic understanding of IET facilitation in the ammonia-stressed AD processes. This review critically discusses recovery of AD system from ammonia-stressed condition, focusing on H2 transfer, redox compound-mediated IET, and conductive material-induced direct IET. The effects and the associated mechanisms of IET stimulation on mitigating ammonia stress and promoting methanogenesis were elucidated. Finally, prospects and challenges of IET stimulation were critically discussed. This review highlights, for the first time, the critical role of IET stimulation in enhancing AD process under ammonia-stressed condition.


Assuntos
Amônia , Elétrons , Anaerobiose , Reatores Biológicos , Transporte de Elétrons , Metano
6.
Bioresour Technol ; 361: 127667, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35878778

RESUMO

Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.


Assuntos
Membranas Artificiais , Águas Residuárias , Anaerobiose , Reatores Biológicos , Humanos , Preparações Farmacêuticas , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/química
7.
Bioresour Technol ; 347: 126739, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051566

RESUMO

The mitigation of greenhouse gas (GHG) emission is one of the major focuses of The Glasgow Climate Pact, a global agreement that is believed to accelerate climate action. Following the energy sector, industrial and agro-wastes are the major contributors to global GHG emission. With the rapid growth in population, affluence, and urbanization, the GHG emission from waste sector is likely to be further aggravated if timely measures are not taken to address this burning issue. Thus, a significant research and development efforts are being made in shifting conventional waste treatment approach to resource recovery from waste, incorporating a circular bioeconomy concept. There have been significant advances in technologies such as anaerobic digestion, composting, pyrolysis, algae farming, and microbial fuel cell for recovering resources from organic wastes. This virtual special issue (VSI), "Bioconversion of Waste-to-Resources (BWR-2021)", contains 25 manuscripts covering various aspects of wastes and residual biomass valorization to high value products, including development of new technologies, optimization of current technologies for more efficient utilization of wastes and residues. The key findings of each manuscript are briefly summarized here, which can serve as a valuable resource for researchers in the field of resource recovery from wastes.


Assuntos
Compostagem , Fertilizantes , Biomassa , Indústrias , Pirólise
8.
Bioresour Technol ; 343: 126063, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34619321

RESUMO

Anaerobic mono- and co-digestion of coffee pulp (CP), cattle manure (CM), food waste (FW) and dewatered sewage sludge (DSS), were assessed using biochemical methane potential tests. The effects of two different inocula, anaerobically digested cattle manure (ADCM) and anaerobically digested waste activated sludge (ADWAS), and five different co-feedstock ratios for CP:CM and FW:DSS (1:0, 4:1, 2:1, 4:3, and 0:1) on specific methane yields were also evaluated. Mono-digestions of both CP and FW yielded the highest methane yield compared to the co-digestion ratios examined. Furthermore, no synergistic or antagonistic effect was observed for any of the co-digestion ratios tested. Nine different kinetic models (five conventional mono-digestion models and four co-digestion models) were compared and evaluated for both mono- and co-digestion studies. For CP:CM, cone and modified Gompertz with second order equation models were the best-fit for mono- and co-digestion systems, respectively, while for FW:DSS, superimposed model showed the best-fit for all systems.


Assuntos
Eliminação de Resíduos , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Bovinos , Digestão , Alimentos , Metano , Esgotos
9.
Waste Manag ; 137: 264-274, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814072

RESUMO

Bioponics has the potential to recover nutrients from organic waste streams, such as chicken manure and digestate with high volatile fatty acid (VFA) contents through crop production. Acetic acid, a dominant VFA, was supplemented weekly (0, 500, 1000, and 1500 mg/L) in a chicken manure-based bioponic system, and its effect on the performance of bioponics (e.g., plant yield and nitrogen and phosphorus availabilities) was examined. Microbial communities were analyzed using 16S rRNA gene sequencing, and the functional gene abundances were predicted using PICRUSt. Although acetic acid negatively affected plant yield, no significant difference (p > 0.05) was noted in the average nitrogen or phosphorus concentration. In terms of nutrient recovery, the bioponic systems still functioned well, although higher concentrations of acetic acid decreased plant yield and altered the bacterial communities in plant roots and chicken manure sediments. These data suggest that an acetic acid concentration of < 500 mg/L or a longer loading interval is recommended for the effective operation of chicken manure and digestate-based bioponics.


Assuntos
Esterco , Microbiota , Ácido Acético , Animais , Reatores Biológicos , Galinhas , Suplementos Nutricionais , Nitrogênio/análise , Fósforo , RNA Ribossômico 16S/genética
10.
Bioresour Technol ; 345: 126433, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34848330

RESUMO

Anaerobic digestion (AD) is widely adopted for remediating diverse organic wastes with simultaneous production of renewable energy and nutrient-rich digestate. AD process, however, suffers from instability, thereby adversely affecting biogas production. There have been significant efforts in developing strategies to control the AD process to maintain process stability and predict AD performance. Among these strategies, machine learning (ML) has gained significant interest in recent years in AD process optimization, prediction of uncertain parameters, detection of perturbations, and real-time monitoring. ML uses inductive inference to generalize correlations between input and output data, subsequently used to make informed decisions in new circumstances. This review aims to critically examine ML as applied to the AD process and provides an in-depth assessment of important algorithms (ANN, ANFIS, SVM, RF, GA, and PSO) and their applications in AD modeling. The review also outlines some challenges and perspectives of ML, and highlights future research directions.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Biocombustíveis , Aprendizado de Máquina
11.
Bioresour Technol ; 330: 125001, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773269

RESUMO

Anaerobic digestion is a long-established technology for the valorization of diverse organic wastes with concomitant generation of valuable resources. However, mono-digestion (i.e., anaerobic digestion using one feedstock) suffers from challenges associated with feedstock characteristics. Co-digestion using multiple feedstocks provides the potential to overcome these limitations. Significant research and development efforts have highlighted several inherent merits of co-digestion, including enhanced digestibility due to synergistic effects of co-substrates, better process stability, and higher nutrient value of the produced co-digestate. However, studies focused on the underlying effects of diverse co-feedstocks on digester performance and stability have not been synthesized so far. This review fills this gap by highlighting the limitations of mono-digestion and critically examining the benefits of co-digestion. Furthermore, this review discusses synergistic effect of co-substrates, characterization of microbial communities, the prediction of biogas production via different kinetic models, and highlights future research directions for the development of a sustainable biorefinery.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Biocombustíveis , Digestão , Metano
12.
Waste Manag ; 117: 58-80, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805602

RESUMO

Population growth and unprecedented economic growth and urbanization, especially in low- and middle-income countries, coupled with extreme weather patterns, the high-environmental footprint of agricultural practices, and disposal-oriented waste management practices, require significant changes in the ways we produce food, feed and fuel, and manage enormous amounts of organic wastes. Farming insects such as the black soldier fly (BSF) (Hermetia illucens) on diverse organic wastes provides an opportunity for producing nutrient-rich animal feed, fuel, organic fertilizer, and biobased products with concurrent valorization of wastes. Inclusion of BSF larvae/pupae in the diets of poultry, fish, and swine has shown promise as a potential substitute of conventional feed ingredients such as soybean meal and fish meal. Moreover, the bioactive compounds such as antimicrobial peptides, medium chain fatty acids, and chitin and its derivatives present in BSF larvae/pupae, could also add values to the animal diets. However, to realize the full potential of BSF-based biorefining, more research and development efforts are necessary for scaling up the production and processing of BSF biomass using more mechanized and automated systems. More studies are also needed to ensure the safety of the BSF biomass grown on various organic wastes for animal feed (also food) and legalizing the feed application of BSF biomass to wider categories of animals. This critical review presents the current status of the BSF technology, identifies the research gaps, highlights the challenges towards industrial scale production, and provides future perspectives.


Assuntos
Dípteros , Eliminação de Resíduos , Simuliidae , Ração Animal , Animais , Dieta , Larva , Suínos
13.
Bioresour Technol ; 301: 122711, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31927459

RESUMO

This study examined the use of biochar to alleviate sulfide toxicity to methane producing archaea (MPA) and sulfate-reducing bacteria (SRB) during anaerobic treatment of sulfate-rich wastewater with concomitant sulfur recovery. At the sulfate concentration of 6000 mg SO42-/L, the dissolved sulfide (DS) of 131 mg S/L resulted in total volatile fatty acids concentration of 3500 mg/L as acetic acid (HAc) and the reactors were on the verge of failure. Biochar removed >98% of H2S(g), 94% of DS, and 89% of unionized sulfide (H2Saq). 16S rRNA analysis revealed that after sulfide removal the relative abundance of MPA (Methanobacterium and Methanosaeta) increased from 0.7% to 3.7%, while the relative abundance of SRB (Desulfovibrio) decreased from 9.3% to 0.5% indicating that the reactor recovered to stable state. This study showed that biochar could effectively remove H2S from biogas, alleviate sulfide toxicity to MPA and SRB, and promote stability of the anaerobic process.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Carvão Vegetal , Metano , RNA Ribossômico 16S , Sulfatos , Sulfetos , Eliminação de Resíduos Líquidos
14.
Bioresour Technol ; 300: 122593, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31881517

RESUMO

Experimental conditions of liquid hot water (LHW) pretreatment were tested for two dedicated energy crops, Napiergrass (Pennisetum purpureum) and Energycane (Saccharum officinarum × Saccharum robustum). Both crops showed differential resistance to temperature during pretreatment and differences in response to biomass and enzyme loadings during subsequent enzymatic hydrolysis. Sugar response surfaces, for both glucose release per g pretreated biomass and as percent yield of glucose present in the initial biomass, were estimated using a General Additive Model (GAM) in R to compare non-linear sugar release as temperature, and biomass and enzyme loadings were manipulated. Compared to Napiergrass, more structural glucose is estimated to be recovered from Energycane per g of pretreated biomass under relatively less harsh pretreatment conditions, however, Napiergrass had the highest measured glucose yield. Sugar degradation products (furfural and hydroxymethylfurfural), pH, and biomass recovery differed significantly between crops across pretreatment temperatures, which could adversely affect downstream biochemical processes.


Assuntos
Lignina , Açúcares , Biomassa , Temperatura Alta , Hidrólise , Temperatura , Água
15.
Bioresour Technol ; 284: 128-138, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927650

RESUMO

Anaerobic digestion (AD) of lignocellulosic biomass has received significant attention for bioenergy production in recent years. However, hydrolysis is a rate-limiting in AD of such feedstock. In this study, effects of hydrothermal pretreatment of Napier grass, a model lignocellulosic biomass, on methane yield were examined through series of batch and semi-continuous studies. In batch studies, the highest methane yield of 248.2 ±â€¯5.5 NmL CH4/g volatile solids (VS)added was obtained from the biomass pretreated at 175 °C, which was 35% higher than that from the unpretreated biomass. The biomass pretreated at 200 °C resulted in formation of 5-hydroxymethylfurfural and furfural, which significantly inhibited methanogenesis. In semi-continuous studies, digester fed with the biomass pretreated at 200 °C at organic loading rate (OLR) of 4 g VS/L.d resulted in digester failure. Thus, OLRsoluble/OLRtotal ratio <200 is proposed as an operating criterion for effective operation of digester fed with pretreated biomass slurry.


Assuntos
Biomassa , Lignina/metabolismo , Metano/metabolismo , Anaerobiose , Hidrólise , Temperatura
16.
Bioresour Technol ; 262: 194-202, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29705611

RESUMO

This study examined the composition and anaerobic digestibility of the different plant parts of two high-yielding tropical energy crops, Energycane and Napier grass, collected across three locations and two seasons. Both biomass composition and biomethane yields varied significantly with crop types, plant parts and harvest seasons. In Energycane, specific methane yield (SMY) (Nm3 (kg VSadded)-1) was higher from stems (0.232 ±â€¯0.003) than leaves (0.224 ±â€¯0.003), while in Napier grass, SMY was higher from leaves (0.243 ±â€¯0.002) than stems (0.168 ±â€¯0.002). Energycane had higher specific and total (Nm3 ha-1 year-1) methane yields (0.230 ±â€¯0.002 and 8749 ±â€¯494, respectively) than Napier grass (0.192 ±â€¯0.002 and 5575 ±â€¯494, respectively). The SMYs from biomass correlated negatively with acid detergent fiber, cellulose and lignin content in the biomass. Energycane and Napier grass had lower specific but comparable total methane yields (TMYs) with maize. The ecological, economic and environmental merits associated with perennial crops suggest they could outperform maize as a substrate for bioenergy production.


Assuntos
Biocombustíveis , Produtos Agrícolas , Metano/análise , Biomassa , Lignina , Zea mays
17.
Bioresour Technol ; 251: 218-229, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29277053

RESUMO

The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products.


Assuntos
Biomassa , Produtos Agrícolas , Biocombustíveis , Carboidratos , Pennisetum
18.
Bioresour Technol ; 215: 304-313, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27005786

RESUMO

Anaerobic digestion (AD) has been in use for many decades. To date, it has been primarily aimed at treating organic wastes, mainly manures and wastewater sludge, and industrial wastewaters. However, with the current advancements, a more open mind is required to look beyond these somewhat restricted original applications of AD. Biorefineries are such concepts, where multiple products including chemicals, fuels, polymers etc. are produced from organic feedstocks. The anaerobic biorefinery concept is now gaining increased attention, utilizing AD as the final disposal step. This review aims at evaluating the potential significance of anaerobic biorefineries, including types of feedstocks, uses for the produced energy, as well as sustainable applications of the generated residual digestate. A comprehensive analysis of various types of anaerobic biorefineries has been developed, including both large-scale and household level applications. Finally, future directives are highlighted showing how anaerobic biorefinery concept could impact the bioeconomy in the near future.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Gerenciamento de Resíduos/métodos , Águas Residuárias , Anaerobiose , Animais , Reatores Biológicos/microbiologia , Humanos , Esterco , Esgotos/química , Esgotos/microbiologia , Instalações de Eliminação de Resíduos , Águas Residuárias/química , Águas Residuárias/microbiologia
19.
Bioresour Technol ; 178: 187-193, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25443805

RESUMO

The compositional changes of Napier grass (Pennisetum purpureum) with respect to maturity (namely, 2, 4, 6, and 8 months age), and its effect on anaerobic digestion was examined under three sieving regimes (6, 10, and 20mm). Significant changes in plant composition were observed with crop maturity. The highest methane yields of 219±4.9 NmL/g VS added was found for biomass harvested at 2 months old compared to 189±7.3, 131±4.7, and 104±2.3 NmL of methane/g VS added, respectively, for 4, 6, and 8 months old biomass. For all ages, feedstock passed through a 6mm sieve resulted in significantly higher methane yields compared to biomass passed through 10 and 20mm sieves. Additionally, 2 months old biomass exhibited the highest digestibility of cellulose and hemicellulose, whereas digestibility of cellulose and hemicellulose were lowest for the biomass harvested at 8 months of maturity.


Assuntos
Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Fontes Geradoras de Energia , Metano/biossíntese , Eliminação de Resíduos/métodos , Anaerobiose , Técnicas de Cultura Celular por Lotes , Produtos Agrícolas/metabolismo , Lignina/metabolismo , Modelos Lineares , Poaceae/crescimento & desenvolvimento
20.
Bioresour Technol ; 178: 178-186, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446783

RESUMO

Anaerobic digestion (AD) of lignocellulosic biomass provides an excellent opportunity to convert abundant bioresources into renewable energy. Rumen microorganisms, in contrast to conventional microorganisms, are an effective inoculum for digesting lignocellulosic biomass due to their intrinsic ability to degrade substrate rich in cellulosic fiber. However, there are still several challenges that must be overcome for the efficient digestion of lignocellulosic biomass. Anaerobic biorefinery is an emerging concept that not only generates bioenergy, but also high-value biochemical/products from the same feedstock. This review paper highlights the current status of lignocellulosic biomass digestion and discusses its challenges. The paper also discusses the future research needs of lignocellulosic biomass digestion.


Assuntos
Biomassa , Eliminação de Resíduos/métodos , Anaerobiose , Biotecnologia , Lignina/metabolismo , Metano/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA