Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(16): 13442-13451, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29620865

RESUMO

High specific capacity anode materials such as silicon (Si) are increasingly being explored for next-generation, high performance lithium (Li)-ion batteries. In this context, Si films are advantageous compared to Si nanoparticle based anodes since in films the free volume between nanoparticles is eliminated, resulting in very high volumetric energy density. However, Si undergoes volume expansion (contraction) under lithiation (delithiation) of up to 300%. This large volume expansion leads to stress build-up at the interface between the Si film and the current collector, leading to delamination of Si from the surface of the current collector. To prevent this, adhesion promotors (such as chromium interlayers) are often used to strengthen the interface between the Si and the current collector. Here, we show that such approaches are in fact counter-productive and that far better electrochemical stability can be obtained by engineering a van der Waals "slippery" interface between the Si film and the current collector. This can be accomplished by simply coating the current collector surface with graphene sheets. For such an interface, the Si film slips with respect to the current collector under lithiation/delithiation, while retaining electrical contact with the current collector. Molecular dynamics simulations indicate (i) less stress build-up and (ii) less stress "cycling" on a van der Waals slippery substrate as opposed to a fixed interface. Electrochemical testing confirms more stable performance and much higher Coulombic efficiency for Si films deposited on graphene-coated nickel (i.e., slippery interface) as compared to conventional nickel current collectors.

2.
ACS Nano ; 11(5): 5051-5061, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28414906

RESUMO

Silicon (Si) shows promise as an anode material in lithium-ion batteries due to its very high specific capacity. However, Si is highly brittle, and in an effort to prevent Si from fracturing, the research community has migrated from the use of Si films to Si nanoparticle based electrodes. However, such a strategy significantly reduces volumetric energy density due to the porosity of Si nanoparticle electrodes. Here we show that contrary to conventional wisdom, Si films can be stabilized by two strategies: (a) anchoring the Si films to a carbon nanotube macrofilm (CNM) current collector and (b) draping the films with a graphene monolayer. After electrochemical cycling, the graphene-coated Si films on CNM resembled a tough mud-cracked surface in which the graphene capping layer suppresses delamination and stabilizes the solid electrolyte interface. The graphene-draped Si films on CNM exhibit long cycle life (>1000 charge/discharge steps) with an average specific capacity of ∼806 mAh g-1. The volumetric capacity averaged over 1000 cycles of charge/discharge is ∼2821 mAh cm-3, which is 2 to 5 times higher than what is reported in the literature for Si nanoparticle based electrodes. The graphene-draped Si anode could also be successfully cycled against commercial cathodes in a full-cell configuration.

3.
ACS Nano ; 9(11): 11342-50, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26412399

RESUMO

The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed <12% loss in specific capacity over 100 continuous folding and unfolding cycles. Such shape-conformable Li-S batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.

4.
Adv Mater ; 27(21): 3256-65, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25899342

RESUMO

The delamination buckling approach provides a facile means to dynamically control the optical transmittance of extremely flexible and stretchable graphene oxide coatings with fast response time. Such graphene oxide coatings can be deposited by scalable solution-processing methods for potential applications in dynamic glazing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA