Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920032

RESUMO

Increasing numbers of small proteins with diverse physiological roles are being identified and characterized in both prokaryotic and eukaryotic systems, but the origins and evolution of these proteins remain unclear. Recent genomic sequence analyses in several organisms suggest that new functions encoded by small open reading frames (sORFs) may emerge de novo from noncoding sequences. However, experimental data demonstrating if and how randomly generated sORFs can confer beneficial effects to cells are limited. Here, we show that by upregulating hisB expression, de novo small proteins (≤50 amino acids in length) selected from random sequence libraries can rescue Escherichia coli cells that lack the conditionally essential SerB enzyme. The recovered small proteins are hydrophobic and confer their rescue effect by binding to the 5' end regulatory region of the his operon mRNA, suggesting that protein binding promotes structural rearrangements of the RNA that allow increased hisB expression. This study adds RNA regulatory elements as another interacting partner for de novo proteins isolated from random sequence libraries and provides further experimental evidence that small proteins with selective benefits can originate from the expression of nonfunctional sequences.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/metabolismo , RNA/metabolismo , Óperon , Fases de Leitura Aberta/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Mol Biol Evol ; 37(5): 1329-1341, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31977019

RESUMO

Mobile genetic elements, such as plasmids, phages, and transposons, are important sources for evolution of novel functions. In this study, we performed a large-scale screening of metagenomic phage libraries for their ability to suppress temperature-sensitivity in Salmonella enterica serovar Typhimurium strain LT2 mutants to examine how phage DNA could confer evolutionary novelty to bacteria. We identified an insert encoding 23 amino acids from a phage that when fused with a bacterial DNA-binding repressor protein (LacI) resulted in the formation of a chimeric protein that localized to the outer membrane. This relocalization of the chimeric protein resulted in increased membrane vesicle formation and an associated suppression of the temperature sensitivity of the bacterium. Both the host LacI protein and the extracellular 23-amino acid stretch are necessary for the generation of the novel phenotype. Furthermore, mutational analysis of the chimeric protein showed that although the native repressor function of the LacI protein is maintained in this chimeric structure, it is not necessary for the new function. Thus, our study demonstrates how a gene fusion between foreign DNA and bacterial DNA can generate novelty without compromising the native function of a given gene.


Assuntos
DNA Viral , Fusão Gênica , Repressores Lac/genética , Salmonella typhimurium/genética , Bacteriófagos , Membrana Celular/metabolismo , Repressores Lac/metabolismo , Proteínas Mutantes Quiméricas , Mutação , Fenótipo , Salmonella typhimurium/virologia , Temperatura
3.
J Biol Chem ; 288(40): 28913-24, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23960079

RESUMO

The N-end rule is a conserved mechanism found in Gram-negative bacteria and eukaryotes for marking proteins to be degraded by ATP-dependent proteases. Specific N-terminal amino acids (N-degrons) are sufficient to target a protein to the degradation machinery. In Escherichia coli, the adaptor ClpS binds an N-degron and delivers the protein to ClpAP for degradation. As ClpS recognizes N-terminal Phe, Trp, Tyr, and Leu, which are not found at the N terminus of proteins translated and processed by the canonical pathway, proteins must be post-translationally modified to expose an N-degron. One modification is catalyzed by Aat, an enzyme that adds leucine or phenylalanine to proteins with N-terminal lysine or arginine; however, such proteins are also not generated by the canonical protein synthesis pathway. Thus, the mechanisms producing N-degrons in proteins and the frequency of their occurrence largely remain a mystery. To address these issues, we used a ClpS affinity column to isolate interacting proteins from E. coli cell lysates under non-denaturing conditions. We identified more than 100 proteins that differentially bound to a column charged with wild-type ClpS and eluted with a peptide bearing an N-degron. Thirty-two of 37 determined N-terminal peptides had N-degrons. Most of the proteins were N-terminally truncated by endoproteases or exopeptidases, and many were further modified by Aat. The identities of the proteins point to possible physiological roles for the N-end rule in cell division, translation, transcription, and DNA replication and reveal widespread proteolytic processing of cellular proteins to generate N-end rule substrates.


Assuntos
Aminoácidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteólise , Sequência de Aminoácidos , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Proteínas de Escherichia coli/isolamento & purificação , Proteínas Imobilizadas/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de Proteína
4.
FEBS J ; 277(11): 2428-39, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20477873

RESUMO

Translation initiation factor 1 (IF1) is an essential protein in prokaryotes. The nature of IF1 interactions with the mRNA during translation initiation on the ribosome remains unclear, even though the factor has several known functions, one of them being RNA chaperone activity. In this study, we analyzed translational gene expression in vivo in two cold-sensitive chromosomal mutant variants of IF1 with amino acid substitutions, R40D and R69L, using two different reporter gene systems. The strains with the mutant IF1 gave higher reporter gene expression than the control strain. The extent of this effect was dependent on the composition of the translation initiation region. The Shine-Dalgarno (SD) sequence, AU-rich elements upstream of the SD sequence and the region between the SD sequence and the initiation codon are important for the magnitude of this effect. The data suggest that the wild-type form of IF1 has a translation initiation region-dependent inhibitory effect on translation initiation. Kasugamycin is an antibiotic that blocks translation initiation. Addition of kasugamycin to growing wild-type cells increases reporter gene expression in a very similar way to the altered IF1, suggesting that the infA mutations and kasugamycin affect some related step in translation initiation. Genetic knockout of three proteins (YggJ, BipA, and CspA) that are known to interact with RNA causes partial suppression of the IF1-dependent cold sensitivity.


Assuntos
Aminoglicosídeos/farmacologia , Escherichia coli/genética , Biossíntese de Proteínas , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Escherichia coli/efeitos dos fármacos , Fatores de Iniciação em Eucariotos/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Variação Genética , Dados de Sequência Molecular , Mutação , Plasmídeos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Proteína Estafilocócica A/genética , beta-Galactosidase/genética
5.
RNA ; 15(12): 2312-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19861420

RESUMO

Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.


Assuntos
Escherichia coli/química , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Mensageiro/química , RNA de Transferência/química , Ribossomos/química , Sequência de Bases , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , RNA Bacteriano/ultraestrutura , RNA Mensageiro/metabolismo , RNA Mensageiro/ultraestrutura , RNA de Transferência/metabolismo , RNA de Transferência/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA