Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38659761

RESUMO

The interplay between ribosomal protein composition and mitochondrial function is essential for sustaining energy homeostasis. Precise stoichiometric production of ribosomal proteins is crucial to maximize protein synthesis efficiency while reducing the energy costs to the cell. However, the impact of this balance on mitochondrial ATP generation, morphology and function remains unclear. Particularly, the loss of a single copy ribosomal protein gene is observed in Mendelian disorders like Diamond Blackfan Anemia and is common in somatic tumors, yet the implications of this imbalance on mitochondrial function and energy dynamics are still unclear. In this study, we investigated the impact of haploinsufficiency for four ribosomal protein genes implicated in ribosomopathy disorders (rps-10, rpl-5, rpl-33, rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Our findings uncover significant, albeit variably penetrant, mitochondrial morphological differences across these mutants, alongside an upregulation of glutathione transferases, and SKN-1 dependent increase in oxidative stress resistance, indicative of increased ROS production. Specifically, loss of a single copy of rps-10 in C. elegans led to decreased mitochondrial activity, characterized by lower energy levels and reduced oxygen consumption. A similar reduction in mitochondrial activity and energy levels was observed in human leukemia cells with a 50% reduction in RPS10 transcript levels. Importantly, we also observed alterations in the translation efficiency of nuclear and mitochondrial electron transport chain components in response to reductions in ribosomal protein genes' expression in both C. elegans and human cells. This suggests a conserved mechanism whereby the synthesis of components vital for mitochondrial function are adjusted in the face of compromised ribosomal machinery. Finally, mitochondrial membrane and cytosolic ribosomal components exhibited significant covariation at the RNA and translation efficiency level in lymphoblastoid cells across a diverse group of individuals, emphasizing the interplay between the protein synthesis machinery and mitochondrial energy production. By uncovering the impact of ribosomal protein haploinsufficiency on the translation efficiency of electron transport chain components, mitochondrial physiology, and the adaptive stress responses, we provide evidence for an evolutionarily conserved strategy to safeguard cellular functionality under genetic stress.

2.
BMC Genomics ; 24(1): 512, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658321

RESUMO

The nucleolus is a large nuclear body that serves as the primary site for ribosome biogenesis. Recent studies have suggested that it also plays an important role in organizing chromatin architecture. However, to establish a causal relationship between nucleolar ribosome assembly and chromatin architecture, genetic tools are required to disrupt nucleolar ribosome biogenesis. In this study, we used ATAC-seq to investigate changes in chromatin accessibility upon specific depletion of two ribosome biogenesis components, RPOA-2 and GRWD-1, in the model organism Caenorhabditis elegans. To facilitate the analysis of ATAC-seq data, we introduced two tools: SRAlign, an extensible NGS data processing workflow, and SRAtac, a customizable end-to-end ATAC-seq analysis pipeline. Our results revealed highly comparable changes in chromatin accessibility following both RPOA-2 and GRWD-1 perturbations. However, we observed a weak correlation between changes in chromatin accessibility and gene expression. While our findings corroborate the idea of a feedback mechanism between ribosomal RNA synthesis, nucleolar ribosome large subunit biogenesis, and chromatin structure during the L1 stage of C. elegans development, they also prompt questions regarding the functional impact of these alterations on gene expression.


Assuntos
Caenorhabditis elegans , Sequenciamento de Cromatina por Imunoprecipitação , Animais , Caenorhabditis elegans/genética , Cromatina/genética , RNA Ribossômico/genética , Ribossomos
3.
Open Biol ; 12(4): 210308, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35472285

RESUMO

Translation machinery is responsible for the production of cellular proteins; thus, cells devote the majority of their resources to ribosome biogenesis and protein synthesis. Single-copy loss of function in the translation machinery components results in rare ribosomopathy disorders, such as Diamond-Blackfan anaemia in humans and similar developmental defects in various model organisms. Somatic copy number alterations of translation machinery components are also observed in specific tumours. The organism-wide response to haploinsufficient loss-of-function mutations in ribosomal proteins or translation machinery components is complex: variations in translation machinery lead to reduced ribosome biogenesis, protein translation and altered protein homeostasis and cellular signalling pathways. Cells are affected both autonomously and non-autonomously by changes in translation machinery or ribosome biogenesis through cell-cell interactions and secreted hormones. We first briefly introduce the model organisms where mutants or knockdowns of protein synthesis and ribosome biogenesis are characterized. Next, we specifically describe observations in Caenorhabditis elegans and Drosophila melanogaster, where insufficient protein synthesis in a subset of cells triggers cell non-autonomous growth or apoptosis responses that affect nearby cells and tissues. We then cover the characterized signalling pathways that interact with ribosome biogenesis/protein synthesis machinery with an emphasis on their respective functions during organism development.


Assuntos
Drosophila melanogaster , Ribossomos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Transdução de Sinais
4.
J Agric Food Chem ; 66(48): 12651-12656, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30417643

RESUMO

Glutathione, a tripeptide antioxidant, has recently been shown to be either utilized or synthesized by Gram-positive bacteria, such as lactic acid bacteria. Glutathione plays an important role in countering environmental stress, such as oxidative stress. In this study, cellular activity regarding glutathione in Lactobacillus fermentum CECT 5716 is characterized. We demonstrate that L. fermentum CECT 5716 has a better survival rate in the presence of glutathione under both oxidative and metal stress. As L. fermentum CECT 5716 does not possess the ability to synthesize glutathione under the conditions tested, it shows the ability to uptake both reduced and oxidized glutathione from the environment, regenerate reduced glutathione from oxidized glutathione, and perform secretion of glutathione to the environment.


Assuntos
Glutationa/metabolismo , Limosilactobacillus fermentum/metabolismo , Antioxidantes/metabolismo , Cobre/metabolismo , Dissulfeto de Glutationa/metabolismo , Limosilactobacillus fermentum/crescimento & desenvolvimento , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA