Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Kidney Int Rep ; 9(4): 994-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38765603

RESUMO

Introduction: Kidney disease of unknown etiology accounts for 1 in 10 adult end-stage renal disease (ESRD) cases worldwide. The aim of this study is to clarify the genetic background of patients with chronic kidney disease (CKD) of unknown etiology who initiated renal replacement therapy (RRT) in adulthood. Methods: This is a multicenter cross-sectional cohort study. Of the 1164 patients who attended 4 dialysis clinics in Japan, we first selected patients who started RRT between the ages of 20 and 49 years. After excluding patients with apparent causes of CKD (e.g., diabetic nephropathy, polycystic kidney disease (PKD) with family history, patients who underwent renal biopsy), 90 patients with CKD of unknown cause were included. The 298 genes associated with CKD were analyzed using capture-based targeted next-generation sequencing. Results: Of the 90 patients, 10 (11.1%) had pathogenic variants in CKD-causing genes and 17 (18.9%) had variant of unknown significance (VUS). Three patients had PKD1 pathogenic variants, and 1 patient had PKD1 and COL4A4 pathogenic variants. In addition, 2 patients were diagnosed with atypical hemolytic uremic syndrome (aHUS) due to C3 or CFHR5. One patient each was diagnosed with Alport syndrome due to COL4A4 and COL4A3 variants, nephronophthisis due to NPHP1 variants, Fabry disease due to GLA variants, and autosomal-dominant tubulointerstitial kidney disease due to UMOD variants. Genetic diagnoses were not concordant with clinical diagnoses, except for patients with PKD1 variant. Conclusion: This largest study on genetic analysis in hemodialysis-dependent adults revealed the presence of undiagnosed inherited kidney diseases.

2.
medRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38633811

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a well-described condition in which ~80% of cases have a genetic explanation, while the genetic basis of sporadic cystic kidney disease in adults remains unclear in ~30% of cases. This study aimed to identify novel genes associated with polycystic kidney disease (PKD) in patients with sporadic cystic kidney disease in which a clear genetic change was not identified in established genes. A next-generation sequencing panel analyzed known genes related to renal cysts in 118 sporadic cases, followed by whole-genome sequencing on 47 unrelated individuals without identified candidate variants. Three male patients were found to have rare missense variants in the X-linked gene Cilia And Flagella Associated Protein 47 (CFAP47). CFAP47 was expressed in primary cilia of human renal tubules, and knockout mice exhibited vacuolation of tubular cells and tubular dilation, providing evidence that CFAP47 is a causative gene involved in cyst formation. This discovery of CFAP47 as a newly identified gene associated with PKD, displaying X-linked inheritance, emphasizes the need for further cases to understand the role of CFAP47 in PKD.

3.
J Ren Nutr ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621432

RESUMO

OBJECTIVE: Previous studies reported mixed results on associations between dietary potassium intake and hyperkalemia in patients with chronic kidney disease (CKD). This study investigated the association between potassium intake from different food sources and hyperkalemia in patients with non-dialysis-dependent CKD. METHODS: A total of 285 patients were recruited at a university hospital and two city hospitals in Tokyo. Dietary potassium intake was estimated by a validated diet history questionnaire. Associations of potassium intake from all foods and individual food groups with serum potassium were examined by multivariable linear regression among potassium binder non-users. An association between tertile groups of potassium intake and hyperkalemia, defined as serum potassium ≥5.0 mEq/L, was evaluated by multivariable logistic regression. RESULTS: Among 245 potassium binder non-users, total potassium intake was weakly associated with serum potassium (regression coefficient = 0.147, 95% confidence interval (CI): 0.018-0.277), while an association with hyperkalemia was not observed (first vs third tertile: adjusted odds ratio (aOR) = 0.98, 95% CI: 0.29-3.26). As for food groups, potassium intakes from potatoes, pulses, and green/yellow vegetables were positively associated with serum potassium. Patients in the highest tertile of potassium intake from potatoes had higher odds of hyperkalemia as compared to those in the lowest tertile (aOR = 4.12, 95% CI: 1.19-14.34). CONCLUSION: Total potassium intake was weakly associated with serum potassium, but not with hyperkalemia. Potassium intake from potatoes was associated with hyperkalemia. These findings highlight the importance of considering food sources of potassium in the management of hyperkalemia in CKD.

4.
Sci Rep ; 14(1): 5177, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431709

RESUMO

Coronavirus disease 2019 (COVID-19) affects both life and health. However, the differentiation from other types of pneumonia and effect of kidney disease remains uncertain. This retrospective observational study investigated the risk of in-hospital death and functional decline in ≥ 20% of Barthel Index scores after COVID-19 compared to other forms of pneumonia among Japanese adults, both with and without end-stage kidney disease (ESKD). The study enrolled 123,378 patients aged 18 years and older from a national inpatient administrative claims database in Japan that covers the first three waves of the COVID-19 pandemic in 2020. After a 1:1:1:1 propensity score matching into non-COVID-19/non-dialysis, COVID-19/non-dialysis, non-COVID-19/dialysis, and COVID-19/dialysis groups, 2136 adults were included in the analyses. The multivariable logistic regression analyses revealed greater odds ratios (ORs) of death [5.92 (95% CI 3.62-9.96)] and functional decline [1.93 (95% CI 1.26-2.99)] only in the COVID-19/dialysis group versus the non-COVID-19/non-dialysis group. The COVID-19/dialysis group had a higher risk of death directly due to pneumonia (OR 6.02, 95% CI 3.50-10.8) or death due to other diseases (OR 3.00, 95% CI 1.11-8.48; versus the non-COVID-19/non-dialysis group). COVID-19 displayed a greater impact on physical function than other types of pneumonia particularly in ESKD.


Assuntos
COVID-19 , Falência Renal Crônica , Pneumonia , Adulto , Humanos , Diálise Renal , COVID-19/epidemiologia , Mortalidade Hospitalar , Japão/epidemiologia , Estudos Retrospectivos , Pandemias , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/terapia , Pneumonia/epidemiologia
5.
BMC Nephrol ; 25(1): 25, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254040

RESUMO

Fibronectin (FN) glomerulopathy (FNG), a rare autosomal hereditary renal disease, is characterized by proteinuria resulting from the massive accumulation of FN in the glomeruli. It typically affects individuals aged 10-50 years. In this report, we describe the case of a 57-year-old man who was diagnosed with FNG through genetic analysis and histological examination that revealed membranoproliferative glomerulonephritis. Despite treatment with prednisolone, the therapeutic response was unsatisfactory. Prednisolone was subsequently tapered and discontinued because the patient had pulmonary thromboembolism. Subsequent comprehensive genetic testing, which was initially not conducted because the patient's parents did not have a history of kidney disease, identified a known disease-causing variant in the FN1 gene, indicating a de novo variant. FNG was further confirmed by positive staining of glomeruli with FN using an IST-4 antibody. Although corticosteroid therapy is commonly employed as the initial treatment for MPGN, its appropriateness depends on the underlying etiology. Thus, clinicians must be aware of potential rare genetic causes underlying MPGN.


Assuntos
Glomerulonefrite Membranoproliferativa , Masculino , Humanos , Pessoa de Meia-Idade , Glomerulonefrite Membranoproliferativa/diagnóstico , Glomerulonefrite Membranoproliferativa/tratamento farmacológico , Glomerulonefrite Membranoproliferativa/genética , Glomérulos Renais , Rim , Prednisolona/uso terapêutico
6.
Bone ; 179: 116975, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37993037

RESUMO

INTRODUCTION: Chronic kidney disease (CKD) causes a progressive loss of muscle and bone mass, which frequently overlap with and affect clinical outcomes. However, the impact of sarcopenia, low bone mineral density (BMD; osteopenia or osteoporosis), and osteosarcopenia (sarcopenia and low BMD) on CKD progression is yet to be determined. We aimed to address these issues in patients with CKD without kidney replacement therapy (KRT). METHODS: This prospective cohort study included 251 outpatients aged ≥65 years with CKD without KRT enrolled in our hospital between June 2016 and March 2017. Sarcopenia was defined according to the 2014 criteria of the Asian Working Group for Sarcopenia (AWGS), and low BMD was defined as a T-score of ≤-1.0. The patients were divided into four groups: normal (no sarcopenia/normal BMD), only low BMD (no sarcopenia/low BMD), only sarcopenia (sarcopenia/normal BMD), and osteosarcopenia (sarcopenia/low BMD). The primary outcome was a composite of all-cause deaths, initiating KRT, and admissions owing to major adverse cardiovascular and cerebrovascular events (MACEs). The secondary outcome was a kidney composite outcome that included a 30 % reduction in creatinine-based estimated glomerular filtration rate (eGFR) and initiating KRT. The outcome risk was determined using the Cox regression models adjusted for potential confounders. RESULTS: Median age (25th-75th percentile) and eGFR of the outpatients (35 % women) were 76 (69-81) years and 32.1 (20.8-41.7) ml/min/1.73 m2, respectively. During a median follow-up period of 5.2 years, there were 22 deaths, 117 30 % eGFR reductions, 48 KRTs, and 18 admissions owing to MACEs. The osteosarcopenia group rather than the only low BMD or only sarcopenia groups exhibited a higher risk of the primary (hazard ratio [HR]: 3.28, 95 % confidence interval [CI]: 1.52-7.08) and kidney composite (HR: 2.07, 95 % CI: 1.10-3.89) outcomes. Among the osteosarcopenia-related body compositions and physical functions, low handgrip strength (HGS) was strongly associated with a high risk of primary and kidney composite outcomes (HR: 2.44, 95 % CI: 1.46-4.08; HR: 1.48, 95 % CI: 0.97-2.24, respectively). The increase in HGS but not the body mass index, skeletal muscle mass index, or BMD was associated with lower risks of primary and kidney composite outcomes (HR: 0.93, 95 % CI: 0.89-0.98; HR: 0.96, 95 % CI: 0.92-0.99 per 1 kg, respectively). CONCLUSIONS: Osteosarcopenia was associated with poor survival and kidney outcomes in older patients with CKD. Low HGS, which is common in patients with osteosarcopenia and CKD, was associated with increased mortality risk and kidney function decline. These findings can help the risk prediction and pathogenesis of the kidney-bone-muscle axis and improving muscle strength can help mitigate CKD progression.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Insuficiência Renal Crônica , Sarcopenia , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Sarcopenia/complicações , Força da Mão , Estudos Prospectivos , Osteoporose/complicações , Doenças Ósseas Metabólicas/complicações , Densidade Óssea/fisiologia , Insuficiência Renal Crônica/complicações
7.
JMA J ; 6(4): 404-413, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37941718

RESUMO

Introduction: Chronic kidney disease (CKD) significantly affects activities of daily living (ADLs) before and after the initiation of dialysis, particularly in elderly individuals. However, the impact of admission functional status on dialysis patients' outcome is not fully understood. This study aimed to investigate the effect of the number of ADL disabilities usually measured for all patients hospitalized in Japan on in-hospital outcome for dialysis patients. Methods: Using an inpatient administrative claims database, we included 104,557 admissions of patients undergoing chronic dialysis aged 65 years and above from 2012 to 2014. The primary outcome was in-hospital all-cause mortality (evaluated using logistic regression models), and the secondary outcomes were length of stay and care cost. Results: The mean age of the participants was 74.0 ± 6.2 years, the mean body mass index (BMI) was 21.8 ± 3.9, 31% needed assistance for one or more of five basic ADLs (feeding, transferring, going to toilet, dressing, and bathing) at admission, and 3.5% (n = 3,701) died after hospitalization. After adjusting for confounding factors, the odds ratios (ORs) (95% confidence intervals) of death for 1, 2, 3, 4, and 5 ADL disabilities were 1.43 (1.19-1.70), 2.04 (1.71-2.45), 2.58 (2.19-3.04), 3.74 (3.35-4.17), and 6.83 (6.29-7.41) versus a complete independence, respectively. The increasing number of ADL disabilities was also associated with greater length of stay and costs. Risk stratification by age, admission functional status, and BMI showed an 18-mortality risk matrix with a maximal risk of a 15.5-higher OR for lean patients aged ≥75 years with severe ADL disability compared with that for patients aged <75 years with middle BMI and no ADL disability on admission. Conclusions: Admission functional status decline significantly increases in-hospital mortality, length of stay, and costs. Routine assessment of functional status can facilitate the risk prediction of dialysis patients.

8.
Aging (Albany NY) ; 15(20): 10972-10995, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37889501

RESUMO

Chronic kidney disease (CKD) causes cognitive impairment and contributes to the overall global burden of dementia. However, mechanisms through which the kidneys and brain communicate are not fully understood. We established a CKD mouse model through adenine-induced tubulointerstitial fibrosis. Novel object recognition tests indicated that CKD decreased recognition memory. Sarkosyl-insoluble-proteomic analyses of the CKD mouse hippocampus revealed an accumulation of insoluble MAPT (microtubule-associated protein tau) and RNA-binding proteins such as small nuclear ribonucleoprotein U1 subunit 70 (SNRNP70). Additionally, there was an accumulation of Immunoglobulin G (IgG), indicating blood-brain barrier (BBB) breakdown. We identified that expressions of essential tight-junction protein claudin-5 and adherens-junction protein platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) were decreased in the brain endothelial cells of CKD mice. We determined urea as a major uremic solute that dose dependently decreased both claudin-5 and PECAM-1 expression in the mouse brain endothelial cell line bEnd.3 cells. Gelatin zymography indicated that the serum of CKD mice activated matrix metalloproteinase-2 (MMP2), while marimastat ameliorated the reduction of claudin-5 expression by urea in bEnd.3 cells. This study established a brain proteomic signature of CKD indicating BBB breakdown and insolubility of tau protein, which are pathologically linked to Alzheimer's disease. Urea-mediated activation of MMP2 was partly responsible for BBB breakdown in CKD.


Assuntos
Barreira Hematoencefálica , Insuficiência Renal Crônica , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Proteômica , Insuficiência Renal Crônica/metabolismo , Proteínas tau/metabolismo
9.
J Physiol ; 601(23): 5437-5451, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860942

RESUMO

Aquaporin-2 (AQP2) water channels are proteins that are recycled between intracellular vesicles and the apical plasma membrane in renal collecting ducts. Lipopolysaccharide-responsive beige-like anchor protein (LRBA) is a protein kinase A (PKA) anchoring protein that creates compartmentalized PKA signalling responsible for AQP2 phosphorylation. In response to increased plasma osmolality, vasopressin/cyclic adenosine monophosphate (cAMP)/PKA signalling phosphorylates AQP2, promoting AQP2 trafficking into the apical plasma membrane and increasing water reabsorption from urine. However, the molecular mechanisms by which LRBA mediates vasopressin-induced AQP2 phosphorylation remain unknown. To investigate AQP2 intracellular localization and phosphorylation status in vivo, a density gradient ultracentrifugation technique was combined with an in situ proximity ligation assay, super-resolution structured illumination microscopy and immunoelectron microscopy. Most of the AQP2 was localized on the recycling endosome in the presence of tolvaptan, a vasopressin type 2 receptor (V2R) antagonist. Desmopressin, a V2R agonist, phosphorylated AQP2, translocating it from the recycling endosome to the apical plasma membrane. In contrast, LRBA was constitutively localized at the recycling endosome. Therefore, LRBA and AQP2 were well colocalized in the absence of vasopressin stimulation. The loss of LRBA/PKA signalling by Lrba knockout impaired vasopressin-induced AQP2 phosphorylation, resulting in AQP2 retention at the recycling endosome. Defective AQP2 trafficking caused low urinary concentrating ability in Lrba-/- mice. The LRBA-PKA complex created compartmentalized PKA signalling at the recycling endosome, which facilitated AQP2 phosphorylation in response to vasopressin. KEY POINTS: Membrane proteins are continuously internalized into the endosomal system via endocytosis, after which they are either recycled back to the plasma membrane or degraded at the lysosome. In T cells, lipopolysaccharide-responsive beige-like anchor protein (LRBA) binds directly to the cytotoxic T lymphocyte antigen 4 (CTLA-4), a checkpoint immune molecule, to prevent CTLA-4 lysosomal degradation and promote its vesicle recycling. LRBA has different physiological functions in renal collecting ducts. LRBA and aquaporin-2 (AQP2) water channels were colocalized on the recycling endosome in vivo in the absence of the anti-diuretic hormone vasopressin. LRBA promoted vasopressin-induced AQP2 trafficking, increasing water reabsorption from urine via AQP2. LRBA determined renal responsiveness to vasopressin at recycling endosomes. LRBA is a ubiquitously expressed anchor protein. LRBA signalosomes might regulate membrane trafficking of several constitutively recycled proteins at recycling endosomes.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Antígeno CTLA-4/metabolismo , Lipopolissacarídeos/metabolismo , Transporte Proteico , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Endossomos/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Água/metabolismo , Fosforilação
10.
Hypertension ; 80(12): 2591-2600, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37818643

RESUMO

BACKGROUND: Despite increasing incidences of hypertension, recent trends in mortality and urgent dialysis following acute hypertension (AHT) remain undetermined. METHODS: This retrospective observational cohort study evaluated 50 316 hospitalized AHT patients from 2010 to 2019, using an administrative claims database in Japan. We examined trends in incidence, urgent dialysis, mortality, and its risk factors using Poisson regression models. Using International Classification of Disease and Related Health Problems, 10th Revision codes, AHT was categorized into 5 spectrums: malignant hypertension (n=1792), hypertensive emergency (n=17 907), hypertensive urgency (n=1562), hypertensive encephalopathy (n=6593), and hypertensive heart failure (HHF; n=22 462). RESULTS: The median age of the patients was 76 years, and 54.9% were women. The total AHT incidence was 70 cases per 100 000 admission year. The absolute death rate increased from 1.83% (95% CI, 1.40-2.40) to 2.88% ([95% CI, 2.42-3.41]; Cochran-Armitage trend test, P<0.0001). Upward trends were observed in patients aged ≥80, with lean body mass index ≤18.4, and with HHF. Urgent dialysis rates increased from 1.52% (95% CI, 1.12-2.06) to 2.60% (2.17-3.1; Cochran-Armitage trend test; P=0.0071) in 48 235 patients, excluding maintenance dialysis patients. Older age, men, lean body mass, malignant hypertension, HHF, and underlying chronic kidney disease correlated with higher mortality risk; greater hospital volume correlated with lower mortality risk; and malignant hypertension, HHF, diabetes, chronic kidney disease, and scleroderma correlated with a higher risk of urgent dialysis. CONCLUSIONS: Mortality and urgent dialysis rates following AHT have increased. Aging, complex comorbidities, and HHF-type AHT contributed to the rising trend of mortality.


Assuntos
Hipertensão Maligna , Hipertensão , Insuficiência Renal Crônica , Masculino , Humanos , Feminino , Idoso , Diálise Renal/efeitos adversos , Estudos Retrospectivos , Japão/epidemiologia , Hipertensão/epidemiologia , Fatores de Risco
11.
BMC Nephrol ; 24(1): 108, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095451

RESUMO

BACKGROUND: As messenger RNA (mRNA)-based vaccines for coronavirus disease 2019 (COVID-19) have been administered to millions of individuals worldwide, cases of de novo and relapsing glomerulonephritis after mRNA COVID-19 vaccination are increasing in the literature. While most previous publications reported glomerulonephritis after the first or second dose of an mRNA vaccine, few reports of glomerulonephritis occurring after the third dose of an mRNA vaccine currently exist. CASE PRESENTATION: We report a case of rapidly progressive glomerulonephritis in a patient following the third dose of an mRNA COVID-19 vaccine. A 77-year-old Japanese man with a history of hypertension and atrial fibrillation was referred to our hospital for evaluation of anorexia, pruritus, and lower extremity edema. One year before referral, he received two mRNA vaccines (BNT162b2) for COVID-19. Three months before the visit, he received a third mRNA vaccine (mRNA-1273) for COVID-19. On admission, the patient presented severe renal failure with a serum creatinine level of 16.29 mg/dL, which had increased from 1.67 mg/dL one month earlier, prompting us to initiate hemodialysis. Urinalysis showed nephrotic-range proteinuria and hematuria. Renal biopsy revealed mild mesangial proliferation and expansion, a lobular appearance, and double contours of the glomerular basement membrane. Renal tubules had severe atrophy. Immunofluorescence microscopy showed strong mesangial staining for IgA, IgM, and C3c. Electron microscopy exhibited mesangial and subendothelial electron-dense deposits, leading to a diagnosis of IgA nephropathy with membranoproliferative glomerulonephritis-like changes. The kidney function remained unchanged after steroid therapy. CONCLUSIONS: Although the link between renal lesions and mRNA vaccines remains unclear, a robust immune response induced by mRNA vaccines may play a role in the pathogenesis of glomerulonephritis. Further studies of the immunological effects of mRNA vaccines on the kidney are warranted.


Assuntos
COVID-19 , Glomerulonefrite por IGA , Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Masculino , Humanos , Idoso , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite Membranoproliferativa/patologia , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/complicações , Glomerulonefrite/patologia
12.
Int J Rheum Dis ; 26(8): 1603-1607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36880594

RESUMO

Avacopan is a novel C5a receptor antagonist recently approved for the treatment of microscopic polyangiitis and granulomatosis with polyangiitis. To our knowledge, thrombocytopenia induced by avacopan has not been reported. We report a case of a 78-year-old man with microscopic polyangiitis who developed rapidly progressive glomerulonephritis (RPGN) and vasculitis neuropathy. After developing RPGN, he was treated with prednisolone, which was ineffective. As the dosage of corticosteroids was decreased, he developed impaired dorsiflexion of the left ankle, tingling and numbness in his feet, consistent with vasculitis neuropathy. After a 3-day administration of methylprednisolone, we started avacopan and prednisolone 20 mg/d to reduce the corticosteroid dosage. One week after starting avacopan, platelet counts began to decrease, eventually leading to the cessation of the drug. The possibility of thrombotic microangiopathy and heparin-induced thrombocytopenia was considered unlikely given the clinical course and laboratory studies. After 3 weeks of avacopan cessation, platelet counts began to increase, suggesting avacopan as the most probable cause of thrombocytopenia. Our case highlights the importance of postmarketing surveillance of avacopan to identify its adverse events that were not reported in clinical trials to ensure its safe use. Clinicians should carefully monitor platelet counts when using avacopan.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Granulomatose com Poliangiite , Poliangiite Microscópica , Trombocitopenia , Masculino , Humanos , Idoso , Poliangiite Microscópica/tratamento farmacológico , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Trombocitopenia/tratamento farmacológico , Compostos de Anilina/efeitos adversos , Metilprednisolona/uso terapêutico , Granulomatose com Poliangiite/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Anticorpos Anticitoplasma de Neutrófilos
13.
Front Cell Dev Biol ; 11: 1138504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936695

RESUMO

Drug nephrotoxicity is a common healthcare problem in hospitalized patients and a major limitation during drug development. Multi-segmented kidney organoids derived from human pluripotent stem cells may complement traditional cell culture and animal experiments for nephrotoxicity assessment. Here we evaluate the capability of kidney organoids to investigate drug toxicity in vitro. Kidney organoids express renal drug transporters, OAT1, OAT3, and OCT2, while a human proximal tubular cell line shows the absence of OAT1 and OAT3. Tenofovir and aristolochic acid (AA) induce proximal tubular injury in organoids which is ameliorated by an OAT inhibitor, probenecid, without damage to podocytes. Similarly, cisplatin causes proximal tubular damage that can be relieved by an OCT inhibitor, cimetidine, collectively suggesting the presence of functional OATs and OCTs in organoid proximal tubules. Puromycin aminonucleoside (PAN) induced segment-specific injury in glomerular podocytes in kidney organoids in the absence of tubular injury. Reporter organoids were generated with an ATP/ADP biosensor, which may be applicable to high-throughput screening in the future. In conclusion, the kidney organoid is a useful tool for toxicity assessment in the multicellular context and may contribute to nephrotoxicity assessment during drug development.

14.
Commun Biol ; 6(1): 29, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631535

RESUMO

Signaling through cAMP/protein kinase A (PKA) promotes endothelial barrier function to prevent plasma leakage induced by inflammatory mediators. The discovery of PKA substrates in endothelial cells increases our understanding of the molecular mechanisms involved in vessel maturation. In this study, we evaluate a cAMP inducer, forskolin, and a phospho-PKA substrate antibody to identify ZNF185 as a PKA substrate. ZNF185 interacts with PKA and colocalizes with F-actin in endothelial cells. Both ZNF185 and F-actin accumulate in the plasma membrane region in response to forskolin to stabilize the cortical actin structure. By contrast, ZNF185 knockdown disrupts actin filaments and promotes stress fiber formation without inflammatory mediators. Constitutive activation of RhoA is induced by ZNF185 knockdown, which results in forskolin-resistant endothelial barrier dysfunction. Knockout of mouse Zfp185 which is an orthologous gene of human ZNF185 increases vascular leakage in response to inflammatory stimuli in vivo. Thrombin protease is used as a positive control to assemble stress fibers via RhoA activation. Unexpectedly, ZNF185 is cleaved by thrombin, resulting in an N-terminal actin-targeting domain and a C-terminal PKA-interacting domain. Irreversible dysfunction of ZNF185 protein potentially causes RhoA-dependent stress fiber formation by thrombin.


Assuntos
Actinas , Células Endoteliais , Proteínas com Domínio LIM , Fibras de Estresse , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Camundongos , Actinas/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Proteínas com Domínio LIM/metabolismo , Camundongos Knockout , Proteína rhoA de Ligação ao GTP/metabolismo , Fibras de Estresse/metabolismo , Trombina/farmacologia , Trombina/metabolismo
15.
Circ Res ; 132(4): 415-431, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36700539

RESUMO

BACKGROUND: Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. METHODS AND RESULTS: We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively. CONCLUSIONS: The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.


Assuntos
Vesículas Extracelulares , MicroRNAs , Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Calcificação Vascular/metabolismo , Insuficiência Renal Crônica/metabolismo , Vesículas Extracelulares/metabolismo , Fósforo/metabolismo , Miócitos de Músculo Liso/metabolismo
16.
Genes Cells ; 28(1): 5-14, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36318474

RESUMO

AMP-activated protein kinase (AMPK) inactivation in chronic kidney disease (CKD) leads to energy status deterioration in the kidney, constituting the vicious cycle of CKD exacerbation. Unc-51-like kinase 1 (ULK1) is considered a downstream molecule of AMPK; however, it was recently reported that the activity of AMPK could be regulated by ULK1 conversely. We demonstrated that AMPK and ULK1 activities were decreased in the kidneys of CKD mice. However, whether and how ULK1 is involved in the underlying mechanism of CKD exacerbation remains unknown. In this study, we investigated the ULK1 involvement in CKD, using ULK1 knockout mice. The CKD model of Ulk1-/- mice exhibited significantly exacerbated renal function and worsening renal fibrosis. In the kidneys of the CKD model of Ulk1-/- mice, reduced AMPK and its downstream ß-oxidation could be observed, leading to an energy deficit of increased AMP/ATP ratio. In addition, AMPK signaling in the kidney was reduced in control Ulk1-/- mice with normal renal function compared to control wild-type mice, suggesting that ULK1 deficiency suppressed AMPK activity in the kidney. This study is the first to present ULK1 as a novel therapeutic target for CKD treatment, which regulates AMPK activity in the kidney.


Assuntos
Proteínas Quinases Ativadas por AMP , Insuficiência Renal Crônica , Camundongos , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Fosforilação , Autofagia
17.
Int J Surg ; 104: 106816, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35944801

RESUMO

BACKGROUND: Chronic kidney disease is associated with perioperative mortality. However, outcomes of patients who perioperatively received acute dialysis have not been clarified. We aimed to determine risks for in-hospital death and functional decline following various surgeries with an acute dialysis requirement versus maintenance dialysis and non-dialysis. MATERIALS AND METHODS: We analyzed 22,857 patients who underwent major surgeries during hospitalization in Japan from 2018 until 2019 using an inpatient administrative claims database. Risks of overall death and functional decline assessed by Barthel index scores were determined with logistic regression models. RESULTS: Among the propensity score-matched groups, mortality rates were 8.54% [95% confidence interval (CI) 7.92-9.17], 5.97% (95% CI 5.44-6.50), and 1.12% (95% CI 0.88-1.35) with an acute dialysis requirement, maintenance dialysis, and non-dialysis, respectively. The survivor rates with ≥20%-decline in Barthel index scores were 7.67% (95% CI 7.07-8.26), 8.56% (95% CI 7.93-9.19), and 3.48% (95% CI 3.07-3.89), respectively. Lower preoperative Barthel index scores were strongly associated with mortality independent of surgeries. Cardiac surgery, colorectal resection, esophagectomy, and gastrectomy led to higher mortality, while cardiac surgery, and orthopedic surgery were associated with higher risk of functional decline. In addition, mortality rates after hepatic lobectomy/cholecystectomy/pancreatectomy [odds ratio (OR) 3.09, 95% CI 1.61-5.91] and esophagectomy/gastrectomy (OR 2.65, 95% CI 1.68-4.38) were markedly higher with an acute dialysis requirement when compared with maintenance dialysis. CONCLUSION: Perioperative acute dialysis requirements were associated with substantial risks for mortality and functional decline. Several types of surgeries led to even higher mortality rates for acute dialysis than maintenance dialysis.


Assuntos
Diálise Renal , Insuficiência Renal Crônica , Mortalidade Hospitalar , Humanos , Pontuação de Propensão , Estudos Retrospectivos , Fatores de Risco
18.
Proc Natl Acad Sci U S A ; 119(30): e2202125119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862451

RESUMO

Protein kinase A (PKA) directly phosphorylates aquaporin-2 (AQP2) water channels in renal collecting ducts to reabsorb water from urine for the maintenance of systemic water homeostasis. More than 50 functionally distinct PKA-anchoring proteins (AKAPs) respectively create compartmentalized PKA signaling to determine the substrate specificity of PKA. Identification of an AKAP responsible for AQP2 phosphorylation is an essential step toward elucidating the molecular mechanisms of urinary concentration. PKA activation by several compounds is a novel screening strategy to uncover PKA substrates whose phosphorylation levels were nearly perfectly correlated with that of AQP2. The leading candidate in this assay proved to be an AKAP termed lipopolysaccharide-responsive and beige-like anchor protein (LRBA). We found that LRBA colocalized with AQP2 in vivo, and Lrba knockout mice displayed a polyuric phenotype with severely impaired AQP2 phosphorylation. Most of the PKA substrates other than AQP2 were adequately phosphorylated by PKA in the absence of LRBA, demonstrating that LRBA-anchored PKA preferentially phosphorylated AQP2 in renal collecting ducts. Furthermore, the LRBA-PKA interaction, rather than other AKAP-PKA interactions, was robustly dissociated by PKA activation. AKAP-PKA interaction inhibitors have attracted attention for their ability to directly phosphorylate AQP2. Therefore, the LRBA-PKA interaction is a promising drug target for the development of anti-aquaretics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Aquaporina 2 , Água Corporal , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Água Corporal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Homeostase , Camundongos , Fosforilação
19.
Sci Transl Med ; 14(634): eabj4772, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35235339

RESUMO

Kidneys have the capacity for intrinsic repair, preserving kidney architecture with return to a basal state after tubular injury. When injury is overwhelming or repetitive, however, that capacity is exceeded and incomplete repair results in fibrotic tissue replacing normal kidney parenchyma. Loss of nephrons correlates with reduced kidney function, which defines chronic kidney disease (CKD) and confers substantial morbidity and mortality to the worldwide population. Despite the identification of pathways involved in intrinsic repair, limited treatments for CKD exist, partly because of the limited throughput and predictivity of animal studies. Here, we showed that kidney organoids can model the transition from intrinsic to incomplete repair. Single-nuclear RNA sequencing of kidney organoids after cisplatin exposure identified 159 differentially expressed genes and 29 signal pathways in tubular cells undergoing intrinsic repair. Homology-directed repair (HDR) genes including Fanconi anemia complementation group D2 (FANCD2) and RAD51 recombinase (RAD51) were transiently up-regulated during intrinsic repair but were down-regulated in incomplete repair. Single cellular transcriptomics in mouse models of obstructive and hemodynamic kidney injury and human kidney samples of immune-mediated injury validated HDR gene up-regulation during tubular repair. Kidney biopsy samples with tubular injury and varying degrees of fibrosis confirmed loss of FANCD2 during incomplete repair. Last, we performed targeted drug screening that identified the DNA ligase IV inhibitor, SCR7, as a therapeutic candidate that rescued FANCD2/RAD51-mediated repair to prevent the progression of CKD in the cisplatin-induced organoid injury model. Our findings demonstrate the translational utility of kidney organoids to identify pathologic pathways and potential therapies.


Assuntos
Organoides , Insuficiência Renal Crônica , Animais , Cisplatino/farmacologia , Reparo do DNA , Recombinação Homóloga , Rim , Camundongos
20.
In Vitro Cell Dev Biol Anim ; 58(2): 85-95, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35165826

RESUMO

CRISPR/Cas9 genome editing underwent remarkable progress and significantly contributed to the development of life sciences. Induced pluripotent stem cells (iPSCs) have also made a relevant contribution to regenerative medicine, pharmacological research, and genetic disease analysis. However, knockout iPSC generation with CRISPR/Cas9 in general has been difficult to achieve using approaches such as frameshift mutations to reproduce genetic diseases with full-length or nearly full-length gene deletions. Moreover, splicing and illegitimate translation could make complete knockouts difficult. Full-length gene deletion methods in iPSCs might solve these problems, although no such approach has been reported yet. In this study, we present a practical two-step gene-editing strategy leading to the precise, biallelic, and complete deletion of the full-length NPHP1 gene in iPSCs, which is the first report of biallelic (compound heterozygous) full-gene deletion in iPSCs using CRISPR/Cas9 and single-stranded oligodeoxynucleotides mainly via single-strand template repair (SSTR). Our strategy requires no selection or substances to enhance SSTR and can be used for the analysis of genetic disorders that are difficult to reproduce by conventional knockout methods.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sistemas CRISPR-Cas/genética , Proteínas do Citoesqueleto/genética , Deleção de Genes , Edição de Genes/métodos , Heterozigoto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA