Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696768

RESUMO

Nondestructive plant phenotyping forms a key technique for unraveling molecular processes underlying plant development and response to the environment. While the emergence of high-throughput phenotyping facilities can further our understanding of plant development and stress responses, their high costs greatly hinder scientific progress. To democratize high-throughput plant phenotyping, we developed sets of low-cost image- and weight-based devices to monitor plant shoot growth and evapotranspiration. We paired these devices to a suite of computational pipelines for integrated and straightforward data analysis. The developed tools were validated for their suitability for large genetic screens by evaluating a cowpea (Vigna unguiculata) diversity panel for responses to drought stress. The observed natural variation was used as an input for a genome-wide association study, from which we identified nine genetic loci that might contribute to cowpea drought resilience during early vegetative development. The homologs of the candidate genes were identified in Arabidopsis (Arabidopsis thaliana) and subsequently evaluated for their involvement in drought stress by using available T-DNA insertion mutant lines. These results demonstrate the varied applicability of this low-cost phenotyping system. In the future, we foresee these setups facilitating the identification of genetic components of growth, plant architecture, and stress tolerance across a wide variety of plant species.

2.
J Exp Bot ; 74(18): 5500-5513, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37503569

RESUMO

The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.


Assuntos
Arabidopsis , Solanum lycopersicum , Lâmina Nuclear/metabolismo , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
3.
J Vis Exp ; (185)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876551

RESUMO

A fundamental question in mechanobiology is how living cells sense extracellular mechanical stimuli in the context of cell physiology and pathology. The cellular mechano-sensation of extracellular mechanical stimuli is believed to be through the membrane receptors, the associated protein complex, and the cytoskeleton. Recent advances in mechanobiology demonstrate that the cell nucleus in cytoplasm itself can independently sense mechanical stimuli simultaneously. However, a mechanistic understanding of how the cell nucleus senses, transduces, and responds to mechanical stimuli is lacking, mainly because of the technical challenges in accessing and quantifying the nucleus mechanics by conventional tools. This paper describes the design, fabrication, and implementation of a new magnetic force actuator that applies precise and non-invasive 3D mechanical stimuli to directly deform the cell nucleus. Using CRISPR/Cas9-engineered cells, this study demonstrates that this tool, combined with high-resolution confocal fluorescent imaging, enables the revelation of the real-time dynamics of a mechano-sensitive yes-associated protein (YAP) in single cells as a function of nucleus deformation. This simple method has the potential to bridge the current technology gap in the mechanobiology community and provide answers to the knowledge gap that exists in the relation between nucleus mechanotransduction and cell function.


Assuntos
Núcleo Celular , Mecanotransdução Celular , Biofísica , Núcleo Celular/metabolismo , Fenômenos Mecânicos , Mecanotransdução Celular/fisiologia , Imagem Óptica
4.
Soft Matter ; 18(6): 1112-1148, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089300

RESUMO

An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.


Assuntos
MicroRNAs , Neoplasias , Biofísica , Cálcio , Humanos , Mecanotransdução Celular , MicroRNAs/genética , Neoplasias/genética , Microambiente Tumoral
5.
Mol Biol Cell ; 31(26): 2948-2958, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33147115

RESUMO

Plants lack lamin proteins but contain a class of coiled-coil proteins that serve as analogues to form a laminal structure at the nuclear periphery. These nuclear matrix constituent proteins (NMCPs) play important roles in regulating nuclear morphology and are partitioned into two distinct groups. We investigated Arabidopsis NMCPs (called CRWNs) to study the interrelationship between the three NMCP1-type paralogues (CRWN1, 2, and 3) and the lone NMCP2-type paralogue, CRWN4. An examination of crwn mutants using protein immunoblots demonstrated that CRWN4 abundance depends on the presence of the NMCP1-type proteins, particularly CRWN1. The possibility that CRWN4 is coimported into the nucleus with nuclear localization signal (NLS)-bearing paralogues in the NMCP1-clade was discounted based on recovery of a crwn4-2 missense allele that disrupts a predicted NLS and lowers the abundance of CRWN4 in the nucleus. Further, a screen for mutations that suppress the effects of the crwn4-2 mutation led to the discovery of a missense allele, impa-1G146E, in one of the nine importin-α genes in the Arabidopsis genome. Our results indicate that the CRWN4 carries a functional NLS that interacts with canonic nuclear import machinery. Once imported, the level of CRWN4 within the nucleus is modulated by the abundance of NMCP1 proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes Supressores , Loci Gênicos , Mutação/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA