Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Innov ; 3(2): e115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38946928

RESUMO

Biosimilars are biological drugs created from living organisms or that contain living components. They share an identical amino-acid sequence and immunogenicity. These drugs are considered to be cost-effective and are utilized in the treatment of cancer and other endocrine disorders. The primary aim of biosimilars is to predict biosimilarity, efficacy, and treatment costs; they are approved by the Food and Drug Administration (FDA) and have no clinical implications. They involve analytical studies to understand the similarities and dissimilarities. A biosimilar manufacturer sets up FDA-approved reference products to evaluate biosimilarity. The contribution of next-generation sequencing is evolving to study the organ tumor and its progression with its impactful therapeutic approach on cancer patients to showcase and target rare mutations. The study shall help to understand the future perspectives of biosimilars for use in gastro-entero-logic diseases, colorectal cancer, and thyroid cancer. They also help target specific organs with essential mutational categories and drug prototypes in clinical practices with blood and liquid biopsy, cell treatment, gene therapy, recombinant therapeutic proteins, and personalized medications. Biosimilar derivatives such as monoclonal antibodies like trastuzumab and rituximab are common drugs used in cancer therapy. Escherichia coli produces more than six antibodies or antibody-derived proteins to treat cancer such as filgrastim, epoetin alfa, and so on.

2.
Chem Biol Drug Des ; 103(3): e14505, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38491814

RESUMO

Human beings possess trillions of microbial cells in a symbiotic relationship. This relationship benefits both partners for a long time. The gut microbiota helps in many bodily functions from harvesting energy from digested food to strengthening biochemical barriers of the gut and intestine. But the changes in microbiota composition and bacteria that can enter the gastrointestinal tract can cause infection. Several approaches like culture-independent techniques such as high-throughput and meta-omics projects targeting 16S ribosomal RNA (rRNA) sequencing are popular methods to investigate the composition of the human gastrointestinal tract microbiota and taxonomically characterizing microbial communities. The microbiota conformation and diversity should be provided by whole-genome shotgun metagenomic sequencing of site-specific community DNA associating genome mapping, gene inventory, and metabolic remodelling and reformation, to ease the functional study of human microbiota. Preliminary examination of the therapeutic potency for dysbiosis-associated diseases permits investigation of pharmacokinetic-pharmacodynamic changes in microbial communities for escalation of treatment and dosage plan. Gut microbiome study is an integration of metagenomics which has influenced the field in the last two decades. And the incorporation of artificial intelligence and deep learning through "omics-based" methods and microfluidic evaluation enhanced the capability of identification of thousands of microbes.


Assuntos
Aprendizado Profundo , Microbioma Gastrointestinal , Microbiota , Humanos , Inteligência Artificial , Microbiota/genética , Aprendizado de Máquina
3.
Int J Biol Macromol ; 264(Pt 1): 130639, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453122

RESUMO

The natural interactions between various bacteria, fungi, and other cellulolytic microorganisms destroy lignocellulosic polymers. The efficacy of this process is determined by the combined action of three main enzymes: endoglucanases, exo-glucanases, and ß-glucosidase. The enzyme attacks the polymeric structure's ß-1,4-linkages during the cellulose breakdown reaction. This mechanism is crucial for the environment as it recycles cellulose in the biosphere. However, there are problems with enzymatic cellulose breakdown, including complex cellulase structure, insufficient degradation efficacy, high production costs, and post-translational alterations, many of which are closely related to certain unidentified cellulase properties. These issues impede the practical use of cellulases. A developing area of research is the application of this similar paradigm for industrial objectives. Cellulase enzyme exhibits greater promise in many critical industries, including biofuel manufacture, textile smoothing and finishing, paper and pulp manufacturing, and farming. However, the study on cellulolytic enzymes must move forward in various directions, including increasing the activity of cellulase as well as designing peptides to give biocatalysts their desired attributes. This manuscript includes an overview of current research on different sources of cellulases, their production, and biochemical characterization.


Assuntos
Celulase , Celulases , Celulases/química , Celulase/metabolismo , Celulose/química , Fungos/metabolismo , Bactérias/metabolismo
4.
3 Biotech ; 14(1): 21, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146418

RESUMO

The expense of cellulase enzymes is the main barrier to the enzymatic saccharification of biomass. Numerous tactics, such as the utilizing inexpensive lignocellulosic substrates as well as economically feasible fermentation techniques for the production of the enzyme may reduce the cost of cellulases. The present investigation was aimed to improve cellulase production employing potential cellulolytic soil fungi, Aspergillus stellatus NFCCI 5299 using wheat bran as substrate. Employing response surface methodology (RSM) with central composite design (CCD), the most efficient process parameters were determined. The ideal conditions for the synthesis of carboxy methyl cellulase (CMCase) and filter paper cellulase activity (FPase) were 6 days of incubation, inoculum size of 4 mycelial disc, 125 rpm of agitation, and 3.5% of wheat bran. The significant mycelial development and enzymatic digestion of wheat bran were discovered by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) analysis. The findings suggested that it can be practicable to use wheat bran as substrate under submerged fermentation utilizing Aspergillusstellatus NFCCI 5299 for efficient cellulase production.

5.
Environ Sci Pollut Res Int ; 29(57): 86499-86527, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35771325

RESUMO

The worldwide increase in metropolitan cities and rise in industrialization have resulted in the assimilation of hazardous pollutants into the ecosystems. Different physical, chemical and biological techniques have been employed to remove these toxins from water bodies. Several bioprocess applications using microbes and their enzymes are utilized to achieve the goal. Biocatalysts, such as laccases, are employed explicitly to deplete a variety of organic pollutants. However, the degradation of contaminants using biocatalysts has many disadvantages concerning the stability and activity of the enzyme. Hence, they are immobilized on different supports to improve the enzyme kinetics and recyclability. Furthermore, standard wastewater treatment methods are not effective in eliminating all the contaminants. As a result, membrane separation technologies have emerged to overcome the limitations of traditional wastewater treatment methods. Moreover, enzymes immobilized onto these membranes have generated new avenues in wastewater purification technology. This review provides the latest information on laccases from diverse sources, their molecular framework and their mode of action. This report also gives information about various immobilization techniques and the application of membrane bioreactors to eliminate and biotransform hazardous contaminants. In a nutshell, laccases appear to be the most promising biocatalysts for green and cost-efficient wastewater treatment technologies.


Assuntos
Poluentes Ambientais , Purificação da Água , Lacase/metabolismo , Ecossistema , Estudos de Viabilidade , Purificação da Água/métodos , Águas Residuárias/química , Enzimas Imobilizadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA