Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 126: 112156, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082961

RESUMO

Fibrinogen nanofibers hold great potential for wound healing applications since they mimic the native blood clot architecture and offer important binding sites to support fibroblast adhesion and migration. Recently, we introduced a new method of salt-induced self-assembly to prepare nanofibrous fibrinogen scaffolds. Here, we present our results on the mechanical properties of these scaffolds and their interaction with 3T3 fibroblasts and E. coli bacteria, which we used as model systems for wound healing. Hydrated, nanofibrous fibrinogen scaffolds showed a Young's modulus of 1.3 MPa, which is close to the range of native fibrin. 3T3 fibroblasts adhered and proliferated well on nanofibrous and planar fibrinogen up to 72 h with a less pronounced actin cytoskeleton on nanofibers in comparison to planar fibrinogen. Fibroblasts on nanofibers were smaller with many short filopodia while larger cells with few long filopodia were found on planar fibrinogen. Live cell tracking revealed higher migration velocities on nanofibers in comparison to planar fibrinogen. The growth of E. coli bacteria on nanofibrous fibrinogen was significantly reduced as compared to agar controls with no bacteria migrating through the nanofibers. In summary, we conclude that self-assembled fibrinogen nanofibers could become highly attractive as future scaffolds for wound healing applications.


Assuntos
Escherichia coli , Fibrinogênio , Fibroblastos , Nanofibras , Alicerces Teciduais , Células 3T3 , Animais , Adesão Celular , Camundongos , Engenharia Tecidual
2.
ACS Appl Bio Mater ; 4(2): 1852-1862, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014531

RESUMO

During wound healing, a complex cascade of cellular and molecular events occurs, which is governed by topographical and biochemical cues. Therefore, optimal tissue repair requires scaffold materials with versatile structural and biochemical features. Nanoporous anodic aluminum oxide (AAO) membranes exhibit good biocompatibility along with customizable nanotopography and antimicrobial properties, which has brought them into the focus of wound treatment. However, despite their good permeability, such bioinert ceramic nanopores cannot actively promote cell growth as they lack biochemical cues to support specific ligand-receptor interactions. Therefore, we modified AAO nanopores with the biochemical features of collagen nanofibers or amino groups provided by silanization with (3-aminopropyl)triethoxysilane (APTES) to design a permeable scaffold material that can additionally promote cell adhesion. Viability assays revealed that the metabolic activity of both 3T3 fibroblasts and HaCaT keratinocytes on bare and silanized AAO pores was comparable to glass controls until 72 h. Interestingly, both cell types showed a reduced proliferation on AAO with collagen nanofibers. Nevertheless, scanning electron and fluorescence microscopy revealed that 3T3 fibroblasts exhibited a well-spread morphology with filopodia attached to the nanoporous surface of the underlying AAO membranes or nanofibrous collagen networks, thus indicating a close interaction with the composites. Keratinocytes, although growing in clusters on bare and APTES-modified AAO, also adhered well on collagen-modified AAO membranes. When in contact with Escherichia coli suspensions for 20 h, the AAO membranes successfully prevented bacteria penetration irrespective of the biochemical functionalization. In summary, both functionalization strategies have high potential to specifically control molecular signaling and cell migration to further develop alumina nanopores for wound healing.


Assuntos
Óxido de Alumínio/química , Materiais Biocompatíveis/química , Fibroblastos/química , Queratinócitos/química , Nanofibras/química , Nanoporos , Células 3T3 , Animais , Linhagem Celular , Colágeno/química , Humanos , Teste de Materiais , Camundongos , Tamanho da Partícula
3.
Biofabrication ; 13(1): 015007, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33135668

RESUMO

Current knowledge about cell-biomaterial interactions is often based on two-dimensional (2D) cell culture systems like protein-coated glass slides. However, such smooth surfaces cannot mimic the nanofibrous environment of the native extracellular matrix (ECM). It is therefore a major challenge to transfer the results from 2D surfaces to 3D protein scaffolds with biomimetic nanofiber architecture. To understand the influence of different protein topographies on the cell response we introduce a new process to fabricate binary collagen scaffolds of variable thickness with spatially controlled regions of nanofibrous and smooth topography. We used pH-induced self-assembly to prepare collagen nanofibers with diameters between 130 and 150 nm on glass surfaces, which were partly covered with a polymer mask. After cross-linking with glutaraldehyde, smooth collagen films were prepared on the remaining glass regions. Atomic force microscopy revealed a much lower surface roughness of smooth collagen compared to nanofibers. Subsequently, we studied the viability, morphology and migration of 3T3 fibroblasts on both collagen topographies. We found small, elongated fibroblasts with few, long filopodia on collagen nanofibers whereas large, flat fibroblasts with many short filopodia were observed on smooth collagen. Actin stress fibers on collagen nanofibers were substantially reduced in comparison to smooth collagen. Live cell tracking revealed that fibroblasts on thin nanofibrous collagen migrated faster than on smooth collagen. In summary, binary collagen scaffolds enabled us for the first time to study cell responses to topographical cues on a single protein scaffold. In future, it will be intriguing to transfer our patterning process to other proteins to study fundamental principles of topography-dependent cell recognition processes.


Assuntos
Nanofibras , Colágeno , Fibroblastos , Engenharia Tecidual , Alicerces Teciduais
4.
Beilstein J Nanotechnol ; 11: 991-999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704461

RESUMO

Helical structures can be found in nature at various length scales ranging from the molecular level to the macroscale. Due to their ability to store mechanical energy and to optimize the accessible surface area, helical shapes contribute particularly to motion-driven processes and structural reinforcement. Due to these special features, helical fibers have become highly attractive for biotechnological and tissue engineering applications. However, there are only a few methods available for the production of biocompatible helical microfibers. Given that, we present here a simple technique for the fabrication of helical chitosan microfibers with embedded magnetic nanoparticles. Composite fibers were prepared by wet-spinning and coagulation in an ethanol bath. Thereby, no toxic components were introduced into the wet-spun chitosan fibers. After drying, the helical fibers had a diameter of approximately 130 µm. Scanning electron microscopy analysis of wet-spun helices revealed that the magnetic nanoparticles agglomerated into clusters inside the fiber matrix. The helical constructs exhibited a diameter of approximately 500 µm with one to two windings per millimeter. Due to their ferromagnetic properties they are easily attracted to a permanent magnet. The results from the tensile testing show that the helical chitosan microfibers exhibited an average Young's modulus of 14 MPa. By taking advantage of the magnetic properties of the feedstock solution, the production of the helical fibers could be automated. The fabrication of the helical fibers was achieved by utilizing the magnetic properties of the feedstock solution and winding the emerging fiber around a rotating magnetic collector needle upon coagulation. In summary, our helical chitosan microfibers are very attractive for future use in magnetic tissue engineering or for the development of biocompatible actuator systems.

5.
Nano Lett ; 19(9): 6554-6563, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31418579

RESUMO

As a key player in blood coagulation and tissue repair, fibrinogen has gained increasing attention to develop nanofibrous biomaterial scaffolds for wound healing. Current techniques to prepare protein nanofibers, like electrospinning or extrusion, are known to induce lasting changes in the protein conformation. Often, such secondary changes are associated with amyloid transitions, which can evoke unwanted disease mechanisms. Starting from our recently introduced technique to self-assemble fibrinogen scaffolds in physiological salt buffers, we here investigated the morphology and secondary structure of our novel fibrinogen nanofibers. Aiming at optimum self-assembly conditions for wound healing scaffolds, we studied the influence of fibrinogen concentration and pH on the protein conformation. Using circular dichroism and Fourier-transform infrared spectroscopy, we observed partial transitions from α-helical structures to ß-strands upon fiber formation. Interestingly, a staining with thioflavin T revealed that this conformational transition was not associated with any amyloid formation. Toward novel scaffolds for wound healing, which are stable in aqueous environment, we also introduced cross-linking of fibrinogen scaffolds in formaldehyde vapor. This treatment allowed us to maintain the nanofibrous morphology while the conformation of fibrinogen nanofibers was redeveloped toward a more native state after rehydration. Altogether, self-assembled fibrinogen scaffolds are excellent candidates for novel wound healing systems since their multiscale structures can be well controlled without inducing any pathogenic amyloid transitions.


Assuntos
Fibrinogênio/química , Nanofibras/química , Cicatrização , Fibrinogênio/farmacologia , Humanos , Nanofibras/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA