Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Brain Commun ; 6(5): fcae307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318783

RESUMO

Dementia is a burgeoning global problem. Novel magnetic resonance imaging (MRI) metrics beyond volumetry may bring new insight and aid clinical trial evaluation of interventions early in the Alzheimer's disease course to complement existing imaging and clinical metrics. To determine whether: (i) normalized regional sodium-MRI values (Na-SI) are better predictors of neurocognitive status than volumetry (ii) cerebral amyloid PET status improves modelling. Nondemented older adult (>60 years) volunteers of known Alzheimer's Disease Assessment Scale (ADAS-Cog11), Mini-Mental State Examination (MMSE) and Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neurocognitive test scores, ApolipoproteinE (APOE) e4 +/- cerebral amyloid PET status were prospectively recruited for 3T sodium-MRI brain scans. Left and right hippocampal, entorhinal and precuneus volumes and Na-SI (using the proportional intensity scaling normalization method with field inhomogeneity and partial volume corrections) were obtained after segmentation and co-registration of 3D-T1-weighted proton images. Descriptive statistics, correlation and best-subset regression analyses were performed. In our 76 nondemented participants (mean(standard deviation) age 75(5) years; woman 47(62%); cognitively unimpaired 54/76(71%), mildly cognitively impaired 22/76(29%)), left hippocampal Na-SI, not volume, was preferentially in the best models for predicting MMSE (Odds Ratio (OR) = 0.19(Confidence Interval (CI) = 0.07,0.53), P-value = 0.001) and ADAS-Cog11 (Beta(B) = 1.2(CI = 0.28,2.1), P-value = 0.01) scores. In the entorhinal analysis, right entorhinal Na-SI, not volume, was preferentially selected in the best model for predicting ADAS-Cog11 (B = 0.94(CI = 0.11,1.8), P-value = 0.03). While right entorhinal Na-SI and volume were both selected for MMSE modelling (Na-SI OR = 0.23(CI = 0.09,0.6), P-value = 0.003; volume OR = 2.6(CI = 1.0,6.6), P-value = 0.04), independently, Na-SI explained more of the variance (Na-SI R 2 = 10.3; volume R 2 = 7.5). No imaging variable was selected in the best CERAD models. Adding cerebral amyloid status improved model fit (Akaike Information Criterion increased 2.0 for all models, P-value < 0.001-0.045). Regional Na-SI were more predictive of MMSE and ADAS-Cog11 scores in our nondemented older adult cohort than volume, hippocampal more robust than entorhinal region of interest. Positive amyloid status slightly further improved model fit.

2.
Diagnostics (Basel) ; 14(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39272665

RESUMO

This pilot study investigated the feasibility of using magnetic resonance elastography (MRE) for the non-invasive detection and quantification of liver fibrosis in the Oncopig cancer model. Seven 8-week-old Oncopigs underwent alcoholic liver fibrosis induction and serial MRE imaging and liver biopsy at 1, 2, and 3 months post procedure. MRE was utilized to quantify liver stiffness, and liver fibrosis was histologically graded using the METAVIR system. The primary outcome measure was the capability to detect and quantify liver fibrosis using MRE with radiologic-pathologic correlation. Liver fibrosis induction, MRE imaging, and liver biopsy were successfully performed. MRE liver fibrosis was evident in 57% (4/7), 50% (3/6), and 40% (2/5) animal subjects 1, 2, and 3 months after fibrosis induction, with mean liver stiffness of 2.94, 3.25, and 2.91 kPa, respectively. Histological liver fibrosis was noted in 71% (5/7), 100% (5/5), and 100% (5/5) of animal subjects with available tissue samples. There was no significant statistical correlation between the MRE-measured liver stiffness and the METAVIR fibrosis scores. In conclusion, quantifiable liver fibrosis may be induced in the Oncopig. MRE has potential utility in non-invasively detecting liver stiffness in this large-animal preclinical model, though tissue biopsy was more sensitive in demonstrating disease.

3.
Front Neuroinform ; 18: 1465231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290351

RESUMO

Epilepsy is a prevalent and serious neurological condition which impacts millions of people worldwide. Stereoelectroencephalography (sEEG) is used in cases of drug resistant epilepsy to aid in surgical resection planning due to its high spatial resolution and ability to visualize seizure onset zones. For accurate localization of the seizure focus, sEEG studies combine pre-implantation magnetic resonance imaging, post-implant computed tomography to visualize electrodes, and temporally recorded sEEG electrophysiological data. Many tools exist to assist in merging multimodal spatial information; however, few allow for an integrated spatiotemporal view of the electrical activity. In the current work, we present SEEG4D, an automated tool to merge spatial and temporal data into a complete, four-dimensional virtual reality (VR) object with temporal electrophysiology that enables the simultaneous viewing of anatomy and seizure activity for seizure localization and presurgical planning. We developed an automated, containerized pipeline to segment tissues and electrode contacts. Contacts are aligned with electrical activity and then animated based on relative power. SEEG4D generates models which can be loaded into VR platforms for viewing and planning with the surgical team. Automated contact segmentation locations are within 1 mm of trained raters and models generated show signal propagation along electrodes. Critically, spatial-temporal information communicated through our models in a VR space have potential to enhance sEEG pre-surgical planning.

4.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39211213

RESUMO

White matter (WM) microstructural health declines with increasing age, with evidence suggesting that improved cardiorespiratory fitness (CRF) may mitigate this decline. Specifically, higher fit older adults tend to show preserved WM microstructural integrity compared to their lower fit counterparts. However, the extent to which fitness and aging independently impact WM integrity across the adult lifespan is still an open question, as is the extent to which cerebrovascular health mediates these relationships. In a large sample (N = 125, aged 25-72), we assessed the impact of age and fitness on fractional anisotropy (FA, derived using diffusion weighted imaging, DWI) and probed the mediating role of cerebrovascular health (derived using diffuse optical tomography of the cerebral arterial pulse, pulse-DOT) in these relationships. After orthogonalizing age and fitness and computing a PCA on whole brain WM regions, we found several WM regions impacted by age that were independent from the regions impacted by fitness (hindbrain areas, including brainstem and cerebellar tracts), whereas other areas showed interactive effects of age and fitness (midline areas, including fornix and corpus callosum). Critically, cerebrovascular health mediated both relationships suggesting that vascular health plays a linking role between age, fitness, and brain health. Secondarily, we assessed potential sex differences in these relationships and found that, although females and males generally showed the same age-related FA declines, males exhibited somewhat steeper declines than females. Together, these results suggest that age and fitness impact specific WM regions and highlight the mediating role of cerebrovascular health in maintaining WM health across adulthood.

5.
Neurobiol Dis ; 201: 106653, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214337

RESUMO

Arterial stiffness (arteriosclerosis) has been linked to heightened risks for cognitive decline, and ultimately for Alzheimer's disease and other forms of dementia. Importantly, neurovascular outcomes generally vary according to one's biological sex. Here, capitalizing on a large sample of participants with neuroimaging and behavioral data (N = 203, age range = 18-87 years), we aimed to provide support for a hierarchical model of neurocognitive aging, which links age-related declines in cerebrovascular health to the rate of cognitive decline via a series of intervening variables, such as white matter integrity. By applying a novel piecewise regression approach to our cross-sectional sample to support Granger-like temporal inferences, we show that, on average, a precipitous decline in cerebral arterial elasticity (measured with diffuse optical imaging of the cerebral arterial pulse; pulse-DOT) precedes an acceleration in the development of white matter lesions by nearly a decade, with women protected from these deleterious effects until approximately age 50, the average onset of menopause. By employing multiple-mediator path analyses while controlling for sex, we show that age may impair cognition via the sequential indirect effects of arteriosclerosis and white matter atrophy on fluid, but not crystallized, abilities. Importantly, we replicate these results using pulse pressure, an independent index of arterial health, thereby providing converging evidence for the central role of arteriosclerosis as an accelerating factor in normal and pathological aging and identifying robust sex-related differences in the progression of cerebral arteriosclerosis and white matter degradation.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38928903

RESUMO

Ideational slippage-characterized by incorrect word usage and strained logic during dialogue-is common in aging and, at greater frequency, is an indicator of pre-clinical cognitive decline. Performance-based assessment of ideational slippage may be useful in the study of cognitive aging and Alzheimer's-disease-related pathology. In this preliminary study, we examine the association between corpus callosum volume and a performance-based assessment of ideational slippage in middle-aged and older adults (age 61-79 years). Ideational slippage was indexed from cognitive special scores using the Rorschach Inkblot Method (RIM), which are validated indices of deviant verbalization and logical inaccuracy (Sum6, WSum6). Among middle-aged and older adults, smaller splenium volume was associated with greater ideational slippage (ηp2 = 0.48), independent of processing speed and fluid intelligence. The observed negative associations are consistent with visuospatial perception and cognitive functions of the splenium. The effect was strongest with the splenium, and volumes of the genu and total white matter had small effects that were not statistically significant. Conclusions: Results are discussed with future application of RIM special scores for the assessment of pre-clinical cognitive decline and, based on observed effect sizes, power analyses are reported to inform future study planning.


Assuntos
Corpo Caloso , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Masculino , Corpo Caloso/fisiologia , Cognição , Envelhecimento/fisiologia , Disfunção Cognitiva
7.
J Med Imaging (Bellingham) ; 11(3): 034503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38817710

RESUMO

Purpose: Aortic dissection carries a mortality as high as 50%, but surgical palliation is also fraught with morbidity risks of stroke or paralysis. As such, a significant focus of medical decision making is on longitudinal aortic diameters. We hypothesize that three-dimensional (3D) modeling affords a more efficient methodology toward automated longitudinal aortic measurement. The first step is to automate the measurement of manually segmented 3D models of the aorta. We developed and validated an algorithm to analyze a 3D segmented aorta and output the maximum dimension of minimum cross-sectional areas in a stepwise progression from the diaphragm to the aortic root. Accordingly, the goal is to assess the diagnostic validity of the 3D modeling measurement as a substitute for existing 2D measurements. Approach: From January 2021 to June 2022, 66 3D non-contrast steady-state free precession magnetic resonance images of aortic pathology with clinical aortic measurements were identified; 3D aorta models were manually segmented. A novel mathematical algorithm was applied to each model to generate maximal aortic diameters from the diaphragm to the root, which were then correlated to clinical measurements. Results: With a 76% success rate, we analyzed the resulting 50 3D aortic models utilizing the automated measurement tool. There was an excellent correlation between the automated measurement and the clinical measurement. The intra-class correlation coefficient and p-value for each of the nine measured locations of the aorta were as follows: sinus of valsalva, 0.99, <0.001; sino-tubular junction, 0.89, <0.001; ascending aorta, 0.97, <0.001; brachiocephalic artery, 0.96, <0.001; transverse segment 1, 0.89, <0.001; transverse segment 2, 0.93, <0.001; isthmus region, 0.92, <0.001; descending aorta, 0.96, <0.001; and aorta at diaphragm, 0.3, <0.001. Conclusions: Automating diagnostic measurements that appease clinical confidence is a critical first step in a fully automated process. This tool demonstrates excellent correlation between measurements derived from manually segmented 3D models and the clinical measurements, laying the foundation for transitioning analytic methodologies from 2D to 3D.

8.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562861

RESUMO

Arterial stiffness (arteriosclerosis) has been linked to heightened risks for cognitive decline, and ultimately for Alzheimer's disease and other forms of dementia. Importantly, neurovascular outcomes generally vary according to one's biological sex. Here, capitalizing on a large sample of participants with neuroimaging and behavioral data ( N = 203, age range = 18-87 years), we aimed to provide support for a hierarchical model of neurocognitive aging, which links age-related declines in cerebrovascular health to the rate of cognitive decline via a series of intervening variables, such as white matter integrity. By applying a novel piecewise regression approach to our cross-sectional sample to support Granger-like causality inferences, we show that, on average, a precipitous decline in cerebral arterial elasticity (measured with diffuse optical imaging of the cerebral arterial pulse; pulse-DOT) temporally precedes an acceleration in the development of white matter lesions by nearly a decade, with women protected from these deleterious effects until approximately age 50, the average onset of menopause. By employing multiple-mediator path analyses while controlling for sex, we show that age may impair cognition via the sequential indirect effects of arteriosclerosis and white matter atrophy on fluid, but not crystallized, abilities. Importantly, we replicate these results using pulse pressure, an independent index of arterial health, thereby providing converging evidence for the central role of arteriosclerosis as an accelerating factor in normal and pathological aging and identifying robust sex-related differences in the progression of cerebral arteriosclerosis and white matter degradation.

9.
Geroscience ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598069

RESUMO

As of 2023, it is estimated that 6.7 million individuals in the United States live with Alzheimer's disease (AD). Prior research indicates that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research shows that hippocampal functional connectivity differs by sex and may be related to the observed sex differences in AD, and apolipoprotein E (ApoE) ε4 carriers have reduced hippocampal functional connectivity. The purpose of this study was to determine if the ApoE genotype plays a role in the observed sex differences in hippocampal functional connectivity in Alzheimer's disease. The resting state fMRI and T2 MRI of individuals with AD (n = 30, female = 15) and cognitively normal individuals (n = 30, female = 15) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the functional connectivity toolbox (CONN). Our results demonstrated intrahippocampal functional connectivity differed between those without an ε4 allele and those with at least one ε4 allele in each group. Additionally, intrahippocampal functional connectivity differed only by sex when Alzheimer's participants had at least one ε4 allele. These results improve our current understanding of the role of the interacting relationship between sex, ApoE genotype, and hippocampal function in AD. Understanding these biomarkers may aid in the development of sex-specific interventions for improved AD treatment.

10.
Magn Reson Med ; 92(2): 807-819, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469904

RESUMO

PURPOSE: To develop and validate a noninvasive imaging technique for accurately assessing very slow CSF flow within shunt tubes in pediatric patients with hydrocephalus, aiming to identify obstructions that might impede CSF drainage. THEORY AND METHODS: A simulation of shunt flow enhancement of signal intensity (shunt-FENSI) signal is used to establish the relationship between signal change and flow rate. The quantification of flow enhancement of signal intensity data involves normalization, curve fitting, and calibration to match simulated data. Additionally, a phase sweep method is introduced to accommodate the impact of magnetic field inhomogeneity on the flow measurement. The method is tested in flow phantoms, healthy adults, intensive care unit patients with external ventricular drains (EVD), and shunt patients. EVDs enable shunt-flow measurements to be acquired with a ground truth measure of CSF drainage. RESULTS: The flow-rate-to-signal simulation establishes signal-flow relationships and takes into account the T1 of draining fluid. The phase sweep method accurately accounts for phase accumulation due to frequency offsets at the shunt. Results in phantom and healthy human participants reveal reliable quantification of flow rates using controlled flows and agreement with the flow simulation. EVD patients display reliable measures of flow rates. Shunt patient results demonstrate feasibility of the method and consistent flow rates for functional shunts. CONCLUSION: The results demonstrate the technique's applicability, accuracy, and potential for diagnosing and noninvasively monitoring hydrocephalus. Limitations of the current approach include a high sensitivity to motion and strict requirement of imaging slice prescription.


Assuntos
Derivações do Líquido Cefalorraquidiano , Hidrocefalia , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Masculino , Feminino , Reprodutibilidade dos Testes , Simulação por Computador , Criança , Líquido Cefalorraquidiano/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
11.
Neuroinformatics ; 22(2): 177-191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446357

RESUMO

Large-scale diffusion MRI tractography remains a significant challenge. Users must orchestrate a complex sequence of instructions that requires many software packages with complex dependencies and high computational costs. We developed MaPPeRTrac, an edge-centric tractography pipeline that simplifies and accelerates this process in a wide range of high-performance computing (HPC) environments. It fully automates either probabilistic or deterministic tractography, starting from a subject's magnetic resonance imaging (MRI) data, including structural and diffusion MRI images, to the edge density image (EDI) of their structural connectomes. Dependencies are containerized with Singularity (now called Apptainer) and decoupled from code to enable rapid prototyping and modification. Data derivatives are organized with the Brain Imaging Data Structure (BIDS) to ensure that they are findable, accessible, interoperable, and reusable following FAIR principles. The pipeline takes full advantage of HPC resources using the Parsl parallel programming framework, resulting in the creation of connectome datasets of unprecedented size. MaPPeRTrac is publicly available and tested on commercial and scientific hardware, so it can accelerate brain connectome research for a broader user community. MaPPeRTrac is available at: https://github.com/LLNL/mappertrac .


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Conectoma/métodos
12.
Magn Reson Med ; 91(1): 61-74, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677043

RESUMO

PURPOSE: To improve the spatiotemporal qualities of images and dynamics of speech MRI through an improved data sampling and image reconstruction approach. METHODS: For data acquisition, we used a Poisson-disc random under sampling scheme that reduced the undersampling coherence. For image reconstruction, we proposed a novel locally higher-rank partial separability model. This reconstruction model represented the oral and static regions using separate low-rank subspaces, therefore, preserving their distinct temporal signal characteristics. Regional optimized temporal basis was determined from the regional-optimized virtual coil approach. Overall, we achieved a better spatiotemporal image reconstruction quality with the potential of reducing total acquisition time by 50%. RESULTS: The proposed method was demonstrated through several 2-mm isotropic, 64 mm total thickness, dynamic acquisitions with 40 frames per second and compared to the previous approach using a global subspace model along with other k-space sampling patterns. Individual timeframe images and temporal profiles of speech samples were shown to illustrate the ability of the Poisson-disc under sampling pattern in reducing total acquisition time. Temporal information of sagittal and coronal directions was also shown to illustrate the effectiveness of the locally higher-rank operator and regional optimized temporal basis. To compare the reconstruction qualities of different regions, voxel-wise temporal SNR analysis were performed. CONCLUSION: Poisson-disc sampling combined with a locally higher-rank model and a regional-optimized temporal basis can drastically improve the spatiotemporal image quality and provide a 50% reduction in overall acquisition time.


Assuntos
Imageamento por Ressonância Magnética , Fala , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
13.
Dev Sci ; 27(1): e13418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340633

RESUMO

Functional architecture of the infant brain, especially functional connectivity (FC) within the amygdala network and between the amygdala and other networks (i.e., default-mode [DMN] and salience [SAL] networks), provides a neural basis for infant socioemotional functioning. Yet, little is known about the extent to which early within- and between-network amygdala FC are related to infant stress recovery across the first year of life. In this study, we examined associations between amygdala FC (i.e., within-network amygdala connectivity, and between-network amygdala connectivity with the DMN and SAL) at 3 months and infant recovery from a mild social stressor at 3, 6 and 9 months. At 3 months, thirty-five infants (13 girls) underwent resting-state functional magnetic resonance imaging during natural sleep. Infants and their mothers completed the still-face paradigm at 3, 6, and 9 months, and infant stress recovery was assessed at each time point as the proportion of infant social engagement during the reunion episode. Bivariate correlations indicated that greater positive within-network amygdala FC and greater positive amygdala-SAL FC, but not amygdala-DMN FC, at 3 months predicted lower levels of stress recovery at 3 and 6 months, but were nonsignificant at 9 months. These findings provide preliminary evidence that early functional synchronization within the amygdala network, as well as segregation between the amygdala and the SAL, may contribute to infant stress recovery in the context of infant-mother interaction.


Assuntos
Encéfalo , Participação Social , Lactente , Feminino , Humanos , Tonsila do Cerebelo , Mapeamento Encefálico/métodos , Sono , Vias Neurais , Imageamento por Ressonância Magnética/métodos
14.
Am J Cardiol ; 201: 239-246, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392607

RESUMO

The use of 7 Tesla (T) magnetic resonance imaging (MRI) is expanding across medical specialties, particularly, clinical neurosciences and orthopedics. Investigational 7 T MRI has also been performed in cardiology. A limiting factor for expansion of the role of 7 T, irrespective of the body part being imaged, is the sparse testing of biomedical implant compatibility at field strengths >3 T. Implant compatibility can be tested following the American Society for Testing and Materials International guidelines. To assess the current state of cardiovascular implant safety at field strengths >3 T, a systematic search was performed using PubMed, Web of Science, and citation matching. Studies written in English that included at least 1 cardiovascular-related implant and at least 1 safety outcome (deflection angle, torque, or temperature change) were included. Data were extracted for the implant studied, implant composition, deflection angle, torque, and temperature change, and the American Society for Testing and Materials International standards were followed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines for scoping reviews were followed. A total of 9 studies were included. A total of 34 cardiovascular-related implants tested ex vivo at 7 T and 91 implants tested ex vivo at 4.7 T were included. The implants included vascular grafts and conduits, vascular access ports, peripheral and coronary stents, caval filters, and artificial valves. A total of 2 grafts, 1 vascular access port, 2 vena cava filters, and 5 stents were identified as incompatible with the 7 T MRI. All incompatible stents were 40 mm in length. Based on the safety outcomes reported, we identify several implants that may be compatible with >3 T MRI. This scoping review seeks to concisely summarize all the cardiovascular-related implants tested for ultrahigh field MRI compatibility to date.


Assuntos
Imageamento por Ressonância Magnética , Stents , Humanos , Imageamento por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Vasculares
15.
Cleft Palate Craniofac J ; : 10556656231183385, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335134

RESUMO

OBJECTIVE: To introduce a highly innovative imaging method to study the complex velopharyngeal (VP) system and introduce the potential future clinical applications of a VP atlas in cleft care. DESIGN: Four healthy adults participated in a 20-min dynamic magnetic resonance imaging scan that included a high-resolution T2-weighted turbo-spin-echo 3D structural scan and five custom dynamic speech imaging scans. Subjects repeated a variety of phrases when in the scanner as real-time audio was captured. SETTING: Multisite institution and clinical setting. PARTICIPANTS: Four adult subjects with normal anatomy were recruited for this study. MAIN OUTCOME: Establishment of 4-D atlas constructed from dynamic VP MRI data. RESULTS: Three-dimensional dynamic magnetic resonance imaging was successfully used to obtain high quality dynamic speech scans in an adult population. Scans were able to be re-sliced in various imaging planes. Subject-specific MR data were then reconstructed and time-aligned to create a velopharyngeal atlas representing the averaged physiological movements across the four subjects. CONCLUSIONS: The current preliminary study examined the feasibility of developing a VP atlas for potential clinical applications in cleft care. Our results indicate excellent potential for the development and use of a VP atlas for assessing VP physiology during speech.

16.
Contemp Clin Trials ; 131: 107240, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37244365

RESUMO

As the global population ages, the prevalence of cognitive decline and dementia is expected to rise, creating a significant health and economic burden. The purpose of this trial is to rigorously test, for the first time, the efficacy of yoga training as a physical activity intervention to mitigate age-related cognitive decline and impairment. We are conducting a 6-month randomized controlled trial (RCT) of exercise among 168 middle aged and older adults to compare the efficacy of yoga vs. aerobic exercise on cognitive function, brain structure and function, cardiorespiratory fitness, and circulating inflammatory and molecular markers. Using a single-blind, three arm RCT, 168 older adults ages 55-79 will be assigned to either: a Hatha yoga group, an aerobic exercise group or a stretching-toning active control group. Participants will engage in hour long group exercise 3x/week for 6-months. A comprehensive neurocognitive test battery, brain imaging, cardiovascular fitness test, and a blood draw will take place at baseline; end of the 6-month intervention, and at 12-month follow-up. Our primary outcomes of interest are brain regions, such as hippocampal volume and prefrontal cortex, and cognitive functions, such as episodic memory, working memory and executive functions, that are typically affected by aging and Alzheimer's disease. Not only will this RCT test whether yoga is a means to mitigate age-related cognitive decline, but it may also offer an alternative to aerobic exercise, which could be particularly appealing to older adults with compromised physical functioning. ClinicalTrials.gov Identifier: NCT04323163.


Assuntos
Doença de Alzheimer , Yoga , Pessoa de Meia-Idade , Humanos , Idoso , Exercício Físico/psicologia , Cognição , Função Executiva , Terapia por Exercício/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Hippocampus ; 33(9): 1048-1057, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37246462

RESUMO

Automatic segmentation methods for in vivo magnetic resonance imaging are increasing in popularity because of their high efficiency and reproducibility. However, automatic methods can be perfectly reliable and consistently wrong, and the validity of automatic segmentation methods cannot be taken for granted. Quality control (QC) by trained and reliable human raters is necessary to ensure the validity of automatic measurements. Yet QC practices for applied neuroimaging research are underdeveloped. We report a detailed QC and correction procedure to accompany our validated atlas for hippocampal subfield segmentation. We document a two-step QC procedure for identifying segmentation errors, along with a taxonomy of errors and an error severity rating scale. This detailed procedure has high between-rater reliability for error identification and manual correction. The latter introduces at maximum 3% error variance in volume measurement. All procedures were cross-validated on an independent sample collected at a second site with different imaging parameters. The analysis of error frequency revealed no evidence of bias. An independent rater with a third sample replicated procedures with high within-rater reliability for error identification and correction. We provide recommendations for implementing the described method along with hypothesis testing strategies. In sum, we present a detailed QC procedure that is optimized for efficiency while prioritizing measurement validity and suits any automatic atlas.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Mapeamento Encefálico/métodos
18.
Cereb Cortex ; 33(13): 8321-8332, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37020357

RESUMO

Early functioning of neural networks likely underlies the flexible switching between internal and external orientation and may be key to the infant's ability to effectively engage in social interactions. To test this hypothesis, we examined the association between infants' neural networks at 3 months and infant-mother dyadic flexibility (denoting the structural variability of their interaction dynamics) at 3, 6, and 9 months. Participants included thirty-five infants (37% girls) and their mothers (87% White). At 3 months, infants participated in a resting-state functional magnetic resonance imaging session, and functional connectivity (FC) within the default mode (DMN) and salience (SN) networks, as well as DMN-SN internetwork FC, were derived using a seed-based approach. When infants were 3, 6, and 9 months, infant-mother dyads completed the Still-Face Paradigm where their individual engagement behaviors were observed and used to quantify dyadic flexibility using state space analysis. Results revealed that greater within-DMN FC, within-SN FC, and DMN-SN anticorrelation at 3 months predicted greater dyadic flexibility at 6 months, but not at 3 and 9 months. Findings suggest that early synchronization and interaction between neural networks underlying introspection and salience detection may support infants' flexible social interactions as they become increasingly active and engaged social partners.


Assuntos
Imageamento por Ressonância Magnética , Mães , Feminino , Humanos , Lactente , Masculino , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem
19.
Surg Neurol Int ; 14: 35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895207

RESUMO

Background: Myeloid sarcoma is an uncommon malignant neoplasm that typically arises at extramedullary sites and is associated with a diagnosis of acute myeloid leukemia. While myeloid sarcoma can involve any organ, central nervous system involvement is rare, particularly in the adult population. Case Description: An 87-year-old female presented with progressive paraparesis of 5 days' duration. The magnetic resonance imaging (MRI) revealed an epidural tumor from T4 to T7 with cord compression. When she underwent a laminectomy for tumor resection, the pathology revealed a myeloid sarcoma with monocytic differentiation. Although she improved postoperatively, she elected to pursue hospice care and expired 4 months later. Conclusion: Myeloid sarcoma is an uncommon malignant spinal neoplasm rarely seen in adults. For this 87-year-old female, MRI-documented cord compression warranted decompressive surgery. Although this patient did not opt for adjuvant therapy, other patients with such lesions may undergo additional chemotherapy or radiation therapy. Nevertheless, optimal management for such malignant tumor is still undefined.

20.
Magn Reson Med ; 89(2): 652-664, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36289572

RESUMO

PURPOSE: To enable a more comprehensive view of articulations during speech through near-isotropic 3D dynamic MRI with high spatiotemporal resolution and large vocal-tract coverage. METHODS: Using partial separability model-based low-rank reconstruction coupled with a sparse acquisition of both spatial and temporal models, we are able to achieve near-isotropic resolution 3D imaging with a high frame rate. The total acquisition time of the speech acquisition is shortened by introducing a sparse temporal sampling that interleaves one temporal navigator with four randomized phase and slice-encoded imaging samples. Memory and computation time are improved through compressing coils based on the region of interest for low-rank constrained reconstruction with an edge-preserving spatial penalty. RESULTS: The proposed method has been evaluated through experiments on several speech samples, including a standard reading passage. A near-isotropic 1.875 × 1.875 × 2 mm3 spatial resolution, 64-mm through-plane coverage, and a 35.6-fps temporal resolution are achieved. Investigations and analysis on specific speech samples support novel insights into nonsymmetric tongue movement, velum raising, and coarticulation events with adequate visualization of rapid articulatory movements. CONCLUSION: Three-dimensional dynamic images of the vocal tract structures during speech with high spatiotemporal resolution and axial coverage is capable of enhancing linguistic research, enabling visualization of soft tissue motions that are not possible with other modalities.


Assuntos
Imageamento por Ressonância Magnética , Fala , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Idioma , Linguística
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA