Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
ISME J ; 16(5): 1327-1336, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35001085

RESUMO

Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.


Assuntos
Micorrizas , Ecossistema , Florestas , Micorrizas/genética , Raízes de Plantas/microbiologia , Árvores/microbiologia
2.
New Phytol ; 231(5): 1700-1707, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34110018

RESUMO

The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points.


Assuntos
Ecossistema , Micorrizas , Florestas , Humanos , Solo , Árvores
3.
New Phytol ; 229(5): 2901-2916, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33107606

RESUMO

Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.


Assuntos
Micobioma , Micorrizas , Biodiversidade , Ecossistema , Fungos , Solo , Microbiologia do Solo
4.
PeerJ ; 8: e9750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974092

RESUMO

The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.

5.
Mol Phylogenet Evol ; 148: 106804, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32247883

RESUMO

Concerted evolution of the ribosomal DNA array has been studied in numerous eukaryotic taxa, yet is still poorly understood. rDNA genes are repeated dozens to hundreds of times in the eukaryotic genome (Eickbush and Eickbush, 2007) and it is believed that these arrays are homogenized through concerted evolution (Zimmer et al., 1980; Dover, 1993) preventing the accumulation of intragenomic, and intraspecific, variation. However, numerous studies have reported rampant intragenomic and intraspecific variation in the rDNA array (Ganley and Kobayashi, 2011; Naidoo et al., 2013; Hughes and Petersen, 2001; Lindner and Banik, 2011; Li et al., 2013; Lindner et al., 2013; Hughes et al., 2018), contradicting our current understanding of concerted evolution. The internal transcribed spacers (ITS) of the rDNA cistron are the most commonly used DNA barcoding region in Fungi (Schoch et al., 2012), and rely on concerted evolution to homogenize the rDNA array leading to a "barcode gap" (Puillandre et al., 2012). Here we show that in Boletus edulis Bull., ITS intragenomic variation persists at low allele frequencies throughout the rDNA array, this variation does not correlate with genomic relatedness between populations, and rDNA genes may not evolve in a strictly concerted fashion despite the presence of unequal recombination and gene conversion. Under normal assumptions, heterozygous positions found in ITS sequences represent hybridization between populations, yet through allelic mapping of the rDNA array we found numerous heterozygous alleles to be stochastically introgressed throughout, presenting a dishonest signal of gene flow. Moreover, despite the signal of gene flow in ITS, our organisms were highly inbred, indicating a disconnect between true gene flow and barcoding signals. In addition, we show that while the mechanisms of concerted evolution are ongoing in pseudo-heterozygous individuals, they are not fully homogenizing the ITS array. Concerted evolution of the rDNA array may insufficiently homogenize the ITS gene, allowing for misleading signals of gene flow to persist, vastly complicating the use of the ITS locus for DNA barcoding in Fungi.


Assuntos
Agaricales/genética , DNA Ribossômico/genética , Evolução Molecular , Genômica , Análise de Sequência de DNA , DNA Espaçador Ribossômico/genética , Frequência do Gene/genética , Loci Gênicos , Variação Genética , Genética Populacional , Genoma Fúngico , Haplótipos/genética , Funções Verossimilhança , Metagenômica , Sequenciamento por Nanoporos , Filogenia
7.
Nature ; 558(7709): 243-248, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875410

RESUMO

Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.


Assuntos
Biodiversidade , Florestas , Fungos/classificação , Fungos/fisiologia , Interações entre Hospedeiro e Microrganismos , Micorrizas/fisiologia , Microbiologia do Solo , Europa (Continente) , Fungos/isolamento & purificação , Mapeamento Geográfico
8.
Mycorrhiza ; 28(1): 29-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29101543

RESUMO

The plantation and management of sweet chestnut (Castanea sativa Mill.) orchards is a common and traditional land use system in many areas of Europe that offers the advantage of simultaneous production of nuts and timber. During the last decades, sweet chestnut has declined dramatically in many regions because of the profound social changes in rural areas coupled with pathogen attacks. Truffles, the hypogeous ascocarps of the ectomycorrhizal genus Tuber, are currently cultivated using host trees inoculated with these fungi for improving production in truffle orchards. The production of good forestry quality chestnut seedlings inoculated with European truffles in nurseries is essential for multi-cropping plantation establishment, but so far, it has not been implemented in agroforestry practices. Moreover, it is necessary to assess the physiological condition of the seedlings due to the high calcium amendment needed for the growth of Tuber spp. mycelium that can become toxic for the host plants. In this study, seedlings of C. sativa were inoculated with Tuber aestivum and its ecotypes T. uncinatum, T. brumale, and T. macrosporum and were grown in a greenhouse using culture conditions favorable for the production of high-quality plants for forestry purposes. At the end of the assay, levels of root colonization and morphological and physiological parameters of the seedlings were measured. The colonization of C. sativa with T. aestivum, its ecotype T. uncinatum, and T. brumale was successful, and the seedlings showed normal growth. Inoculation protocols with T. macrosporum need to be improved. Tuber species formed well-developed ectomycorrhizae on C. sativa in nursery conditions.


Assuntos
Ascomicetos/fisiologia , Produção Agrícola , Fagaceae/crescimento & desenvolvimento , Fagaceae/microbiologia , Microbiologia do Solo , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Cálcio/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Ecótipo , Fertilizantes/análise , Agricultura Florestal , Nitrogênio/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Solo/química , Espanha
9.
Front Microbiol ; 8: 2066, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123508

RESUMO

Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called "macrofungi") in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius, which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre's historical dataset with more recent data, either with the "SwissFungi" database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the "Conservatoire et Jardin Botaniques de la Ville de Genève" could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques.

10.
PLoS One ; 12(6): e0177873, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591150

RESUMO

Since the nineteenth century, Myriostoma has been regarded as a monotypic genus with a widespread distribution in north temperate and subtropical regions. However, on the basis of morphological characters and phylogenetic evidence of DNA sequences of the internal transcribed spacer (ITS) regions and the large subunit nuclear ribosomal RNA gene (LSU), four species are now delimited: M. areolatum comb. & stat. nov., M. calongei sp. nov., M. capillisporum comb. & stat. nov., and M. coliforme. Myriostoma coliforme is typified by selecting a lectotype (iconotype) and a modern sequenced collection as an epitype. The four species can be discriminated by a combination of morphological characters, such as stomatal form, endoperidial surface texture, and basidiospore size and ornamentation.


Assuntos
Basidiomycota/genética , DNA Espaçador Ribossômico/genética , Filogenia , Basidiomycota/classificação , Basidiomycota/patogenicidade , Classificação , DNA Fúngico/genética , Piper nigrum/microbiologia , Análise de Sequência de DNA
11.
Biol Conserv ; 194: 71-79, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26917858

RESUMO

Setting aside overmature planted forests is currently seen as an option for preserving species associated with old-growth forests, such as those with dispersal limitation. Few data exist, however, on the utility of set-aside plantations for this purpose, or the value of this habitat type for biodiversity relative to old-growth semi-natural ecosystems. Here, we evaluate the contribution of forest type relative to habitat characteristics in determining species richness and composition in seven forest blocks, each containing an ancient old-growth stand (> 1000 yrs) paired with a set-aside even-aged planted stand (ca. 180 yrs). We investigated the functionally important yet relatively neglected ectomycorrhizal fungi (EMF), a group for which the importance of forest age has not been assessed in broadleaved forests. We found that forest type was not an important determinant of EMF species richness or composition, demonstrating that set-aside can be an effective option for conserving ancient EMF communities. Species richness of above-ground EMF fruiting bodies was principally related to the basal area of the stand (a correlate of canopy cover) and tree species diversity, whilst richness of below-ground ectomycorrhizae was driven only by tree diversity. Our results suggest that overmature planted forest stands, particularly those that are mixed-woods with high basal area, are an effective means to connect and expand ecological networks of ancient old-growth forests in historically deforested and fragmented landscapes for ectomycorrhizal fungi.

12.
Mol Ecol ; 23(22): 5628-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25277863

RESUMO

Ectomycorrhizal fungi are major ecological players in temperate forests, but they are rarely used in measures of forest condition because large-scale, high-resolution, standardized and replicated belowground data are scarce. We carried out an analysis of ectomycorrhizas at 22 intensively monitored long-term oak plots, across nine European countries, covering complex natural and anthropogenic environmental gradients. We found that at large scales, mycorrhizal richness and evenness declined with decreasing soil pH and root density, and with increasing atmospheric nitrogen deposition. Shifts in mycorrhizas with different functional traits were detected; mycorrhizas with structures specialized for long-distance transport related differently to most environmental variables than those without. The dominant oak-specialist Lactarius quietus, with limited soil exploration abilities, responds positively to increasing nitrogen inputs and decreasing pH. In contrast, Tricholoma, Cortinarius and Piloderma species, with medium-distance soil exploration abilities, show a consistently negative response. We also determined nitrogen critical loads for moderate (9.5-13.5 kg N/ha/year) and drastic (17 kg N/ha/year) changes in belowground mycorrhizal root communities in temperate oak forests. Overall, we generated the first baseline data for ectomycorrhizal fungi in the oak forests sampled, identified nitrogen pollution as one of their major drivers at large scales and revealed fungi that individually and/or in combination with others can be used as belowground indicators of environmental characteristics.


Assuntos
Florestas , Micorrizas/fisiologia , Quercus/microbiologia , Microbiologia do Solo , Europa (Continente) , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitrogênio/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo/química , Árvores/microbiologia
13.
PeerJ ; 2: e570, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279259

RESUMO

Accurate diagnosis of the components of our food and a standard lexicon for clear communication is essential for regulating global food trade and identifying food frauds. Reliable identification of wild collected foods can be particularly difficult, especially when they originate in under-documented regions or belong to poorly known groups such as Fungi. Porcini, one of the most widely traded wild edible mushrooms in the world, are large and conspicuous and they are used as a food both on their own and in processed food products. China is a major exporter of porcini, most of it ending up in Europe. We used DNA-sequencing to identify three species of mushroom contained within a commercial packet of dried Chinese porcini purchased in London. Surprisingly, all three have never been formally described by science and required new scientific names. This demonstrates the ubiquity of unknown fungal diversity even in widely traded commercial food products from one of the most charismatic and least overlooked groups of mushrooms. Our rapid analysis and description makes it possible to reliably identify these species, allowing their harvest to be monitored and their presence tracked in the food chain.

14.
Mycorrhiza ; 23(5): 373-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23318650

RESUMO

The high cost and restricted availability of black truffle spore inoculum for controlled mycorrhiza formation of host trees produced for truffle orchards worldwide encourage the search for more efficient and sustainable inoculation methods that can be applied globally. In this study, we evaluated the potential of the nurse plant method for the controlled inoculation of Quercus cerris and Quercus robur with Tuber melanosporum by mycorrhizal networks in pot cultures. Pine bark compost, adjusted to pH 7.8 by liming, was used as substrate for all assays. Initially, Q. robur seedlings were inoculated with truffle spores and cultured for 12 months. After this period, the plants presenting 74 % mycorrhizal fine roots were transferred to larger containers. Nurse plants were used for two treatments of two different nursling species: five sterilized acorns or five 45-day-old, axenically grown Q. robur or Q. cerris seedlings, planted in containers around the nurse plant. After 6 months, colonized nursling plant root tips showed that mycorrhiza formation by T. melanosporum was higher than 45 % in the seedlings tested, with the most successful nursling combination being Q. cerris seedlings, reaching 81 % colonization. Bulk identification of T. melanosporum mycorrhizae was based on morphological and anatomical features and confirmed by sequencing of the internal transcribed spacer region of the ribosomal DNA of selected root tips. Our results show that the nurse plant method yields attractive rates of mycorrhiza formation by the Périgord black truffle and suggest that establishing and maintaining common mycorrhizal networks in pot cultures enables sustained use of the initial spore inoculum.


Assuntos
Inoculantes Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Ascomicetos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Quercus/microbiologia , Inoculantes Agrícolas/genética , Ascomicetos/genética , Micorrizas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Quercus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Árvores/crescimento & desenvolvimento , Árvores/microbiologia
15.
Mycorrhiza ; 20(5): 349-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20033737

RESUMO

Although successful cultivation of the black truffle (Tuber melanosporum) has inspired the establishment of widespread truffle orchards in agricultural lands throughout the world, there are many unknowns involved in proper management of orchards during the 6-10 years prior to truffle production, and there are conflicting results reported for fertilizer treatments. Here, we systematically evaluate the combined effects of nitrogen, phosphorous, and potassium with different doses of each element, applied to either foliage or roots, on plant growth parameters and the mycorrhizal status of outplanted 3-year-old seedlings in five experimental Quercus ilex-T. melanosporum orchards. Fertilization did not significantly improve seedling aboveground growth, but the plants treated with the fertilizer 12-7-7 applied to the roots (HNr) displayed longer field-developed roots. Only the fertilizer with the highest dose of K (10-6-28) applied to the foliage (HKf) increased the probability of fine root tip colonization by T. melanosporum in field-developed roots. However, the plants treated with the same fertilizer applied to the soil (HKr) presented the highest probability for colonization by other competing mycorrhizal soil fungi. Potassium seems to have an important role in mycorrhizal development in these soils. Apart from T. melanosporum, we found 14 ectomycorrhizal morphotypes, from which seven were identified to species level, three to genus, two to family, and two remained unidentified by their morphological characteristics and DNA analyses.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Fertilizantes , Micorrizas/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Quercus/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Ascomicetos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Quercus/metabolismo , Plântula/metabolismo
16.
FEMS Microbiol Lett ; 285(1): 72-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18510558

RESUMO

Relative quantification of DNA from Tuber melanosporum mycelia was performed by conventional and real-time PCR in soil from trees in three truffle orchards of different ages to determine: (1) whether burn appearance is related to the amount of T. melanosporum mycelium in soil, and (2) whether productivity onset and truffle production are related to (a) the amount of T. melanosporum mycelium in soil, (b) tree height and diameter, (c) burn extension and (d) surface rock cover. The burn seems to appear only after a certain amount of mycelium has formed. Precociously productive trees presented higher quantities of mycelium than nonproductive trees in the productivity onset study, while highly productive trees presented less quantities of mycelium than nonproductive trees in the productivity study. Trees with high but not excessive surface rock cover showed greater truffle production. Larger trees tended to display a burn earlier than smaller trees.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Carpóforos/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Quercus/microbiologia , Microbiologia do Solo , Ascomicetos/genética , DNA Fúngico/genética , Micélio/genética , Quercus/crescimento & desenvolvimento
17.
FEMS Microbiol Lett ; 254(2): 251-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16445753

RESUMO

Our objectives were (i) to develop a molecular method to detect mycelia of Tuber melanosporum (black truffle) in soil and (ii) to test for mycelial distribution around two truffle-bearing Quercus ilex trees in a truffle orchard. Isolation of total DNA from soil was performed, followed by PCR amplification with T. melanosporum-specific primers and restriction analysis. To address the detection sensitivity level, soil samples were inoculated with known amounts of gleba of T. melanosporum. The detection limit was >/=11.4 mug of hyphae g(-1) of soil. Mycelium was detected primarily within the area defined by the truffle burn and within the top 35 cm of the soil in all directions from the trees.


Assuntos
Ascomicetos/isolamento & purificação , DNA Fúngico/análise , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Microbiologia do Solo , Solo/análise , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Primers do DNA , DNA Fúngico/isolamento & purificação , Quercus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA