Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Autophagy ; 20(7): 1673-1680, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38478967

RESUMO

Macroautophagy/autophagy is the process by which cells degrade their cytoplasmic proteins or organelles in vacuoles to maintain cellular homeostasis under severe environmental conditions. In the yeast Saccharomyces cerevisiae, autophagy-related (Atg) proteins essential for autophagosome formation accumulate near the vacuole to form the dot-shaped phagophore assembly site/pre-autophagosomal structure (PAS). The PAS then generates the phagophore/isolation membrane (PG), which expands to become a closed double-membrane autophagosome. Hereinafter, we refer to the PAS, PG, and autophagosome as autophagy-related structures (ARSs). During autophagosome formation, Atg2 is responsible for tethering the ARS to the endoplasmic reticulum (ER) via ER exit sites (ERESs), and for transferring phospholipids from the ER to ARSs. Therefore, ARS and the ER are spatially close in the presence of Atg2 but are separated in its absence. Because the contact of an ARS with the ER must be established at the earliest stage of autophagosome formation, it is important to know whether the ARS is tethered to the ER. In this study, we developed a rapid and objective method to estimate tethering of the ARS to the ER by measuring the distance between the ARS and ERES under fluorescence microscopy, and found that tethering of the ARS to the ER was lost without Atg1. This method might be useful to predict the tethering activity of Atg2.Abbreviation: ARS, autophagy-related structure; Dautas, automated measurement of the distance between autophagy-related structures and ER exit sites analysis system; ERES, endoplasmic reticulum exit site; PAS, phagophore assembly site/pre-autophagosomal structure; PCR, polymerase chain reaction; PG, phagophore/isolation membrane; prApe1, precursor of vacuolar aminopeptidase I; Qautas, quantitative autophagy-related structure analysis system; SD/CA; synthetic dextrose plus casamino acid medium; WT, wild-type.


Assuntos
Autofagossomos , Autofagia , Retículo Endoplasmático , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Autofagia/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Vacúolos/metabolismo
2.
Autophagy ; 20(8): 1899-1900, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38513722

RESUMO

The disintegration of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies in vacuoles is essential to the Cvt pathway and macroautophagy in yeast. Atg15 is a vacuolar lipase required for the degradation of both Cvt and autophagic bodies. However, the molecular mechanism of their degradation by Atg15 remains poorly understood. In a recent study, we showed that recombinant Chaetomium thermophilum Atg15 (CtAtg15) possesses phospholipase activity, and that this activity is significantly elevated by proteolytic cleavage at a site away from the active center. The proteolytic cleavage of CtAtg15 causes a conformational change around the active center, resulting in the active open state. Interestingly, activated CtAtg15 can degrade not only Cvt and autophagic bodies but also organelle membranes. On the basis of these results, we propose an activation mechanism by which Atg15, as an "organellase," functions only in vacuoles.


Assuntos
Autofagia , Vacúolos , Vacúolos/metabolismo , Autofagia/fisiologia , Fosfolipases/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Chaetomium/metabolismo , Membranas Intracelulares/metabolismo
3.
Cell Rep ; 42(12): 113567, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38118441

RESUMO

Atg15 (autophagy-related 15) is a vacuolar phospholipase essential for the degradation of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies, hereinafter referred to as intravacuolar/intralysosomal autophagic compartments (IACs), but it remains unknown if Atg15 directly disrupts IAC membranes. Here, we show that the recombinant Chaetomium thermophilum Atg15 lipase domain (CtAtg15(73-475)) possesses phospholipase activity. The activity of CtAtg15(73-475) was markedly elevated by limited digestion. We inserted the human rhinovirus 3C protease recognition sequence and found that cleavage between S159 and V160 was important to activate CtAtg15(73-475). Our molecular dynamics simulation suggested that the cleavage facilitated conformational change around the active center of CtAtg15, resulting in an exposed state. We confirmed that CtAtg15 could disintegrate S. cerevisiae IAC in vivo. Further, both mitochondria and IAC of S. cerevisiae were disintegrated by CtAtg15. This study suggests Atg15 plays a role in disrupting any organelle membranes delivered to vacuoles by autophagy.


Assuntos
Proteínas Fúngicas , Membranas Intracelulares , Fosfolipases , Chaetomium/enzimologia , Chaetomium/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfolipases/química , Fosfolipases/genética , Fosfolipases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Domínios Proteicos , Simulação de Dinâmica Molecular , Mitocôndrias/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Ativação Enzimática
4.
FEBS Lett ; 597(5): 631-642, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36217212

RESUMO

Aminopeptidase I (Ape1) is one of the major cargoes of the cytoplasm-to-vacuole targeting (Cvt) pathway, which is a kind of selective autophagy, in Saccharomyces cerevisiae. After synthesis, the Ape1 precursor (prApe1) undergoes phase separation to form liquid droplets, termed Ape1 droplets, in the cytoplasm. In this study, we found that cells expressing prApe1-GFP exhibited temperature-sensitive formation of Ape1 droplets, which affected its transport. Moreover, we showed that endogenous Ape1 transport was defective at high temperatures in various laboratory strains due to the defect in the formation of Ape1 droplets at these temperatures. Finally, we found that gene disruptants showing heat-tolerant growth suppressed the temperature sensitivity of the Ape1 transport. The formation of Ape1 droplets might be an indicator of cytoplasmic integrity at high temperature.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Vacúolos/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura , Autofagia , Citoplasma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo
5.
Mol Biol Cell ; 32(8): 645-663, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33625870

RESUMO

Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane-bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane-bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase that is essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of the two domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to how the C-terminal lipase domain recognizes autophagic bodies to degrade them.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/fisiologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/fisiologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Autofagossomos/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Transporte Biológico , Hidrolases de Éster Carboxílico/genética , Citoplasma/metabolismo , Lipase/metabolismo , Glicoproteínas de Membrana/genética , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Nature ; 578(7794): 301-305, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025038

RESUMO

Many biomolecules undergo liquid-liquid phase separation to form liquid-like condensates that mediate diverse cellular functions1,2. Autophagy is able to degrade such condensates using autophagosomes-double-membrane structures that are synthesized de novo at the pre-autophagosomal structure (PAS) in yeast3-5. Whereas Atg proteins that associate with the PAS have been characterized, the physicochemical and functional properties of the PAS remain unclear owing to its small size and fragility. Here we show that the PAS is in fact a liquid-like condensate of Atg proteins. The autophagy-initiating Atg1 complex undergoes phase separation to form liquid droplets in vitro, and point mutations or phosphorylation that inhibit phase separation impair PAS formation in vivo. In vitro experiments show that Atg1-complex droplets can be tethered to membranes via specific protein-protein interactions, explaining the vacuolar membrane localization of the PAS in vivo. We propose that phase separation has a critical, active role in autophagy, whereby it organizes the autophagy machinery at the PAS.


Assuntos
Autofagossomos/química , Autofagossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação , Mutação Puntual , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
7.
Mol Cell ; 77(6): 1163-1175.e9, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995729

RESUMO

Clearance of biomolecular condensates by selective autophagy is thought to play a crucial role in cellular homeostasis. However, the mechanism underlying selective autophagy of condensates and whether liquidity determines a condensate's susceptibility to degradation by autophagy remain unknown. Here, we show that the selective autophagic cargo aminopeptidase I (Ape1) undergoes phase separation to form semi-liquid droplets. The Ape1-specific receptor protein Atg19 localizes to the surface of Ape1 droplets both in vitro and in vivo, with the "floatability" of Atg19 preventing its penetration into droplets. In vitro reconstitution experiments reveal that Atg19 and lipidated Atg8 are necessary and sufficient for selective sequestration of Ape1 droplets by membranes. This sequestration is impaired by mutational solidification of Ape1 droplets or diminished ability of Atg19 to float. Taken together, we propose that cargo liquidity and the presence of sufficient amounts of autophagic receptor on cargo are crucial for selective autophagy of biomolecular condensates.


Assuntos
Aminopeptidases/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidases/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Citoplasma/metabolismo , Mutação , Ligação Proteica , Transporte Proteico , Receptores de Superfície Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade , Proteínas de Transporte Vesicular/genética
8.
Nat Struct Mol Biol ; 26(4): 281-288, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911189

RESUMO

A key event in autophagy is autophagosome formation, whereby the newly synthesized isolation membrane (IM) expands to form a complete autophagosome using endomembrane-derived lipids. Atg2 physically links the edge of the expanding IM with the endoplasmic reticulum (ER), a role that is essential for autophagosome formation. However, the molecular function of Atg2 during ER-IM contact remains unclear, as does the mechanism of lipid delivery to the IM. Here we show that the conserved amino-terminal region of Schizosaccharomyces pombe Atg2 includes a lipid-transfer-protein-like hydrophobic cavity that accommodates phospholipid acyl chains. Atg2 bridges highly curved liposomes, thereby facilitating efficient phospholipid transfer in vitro, a function that is inhibited by mutations that impair autophagosome formation in vivo. These results suggest that Atg2 acts as a lipid-transfer protein that supplies phospholipids for autophagosome formation.


Assuntos
Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Schizosaccharomyces/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Fosfolipídeos/metabolismo
9.
Autophagy ; 13(12): 2104-2110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28980865

RESUMO

When macroautophagy (autophagy) is induced by nutrient starvation or rapamycin treatment, Atg (autophagy-related) proteins are assembled at a restricted region close to the vacuole. Subsequently, the phagophore expands to form a closed autophagosome. In Saccharomyces cerevisiae cells overexpressing precursor Ape1 (prApe1), a specific autophagosome cargo protein, the phagophore can be visualized as a cup-shaped structure labeled with green fluorescent protein (GFP)-tagged Atg8. Previously, our group has shown that the maximum length of GFP-Atg8-labeled structures reflects the magnitude of bulk autophagy. In that study, the morphological parameters of the autophagy-related structures were extracted manually, requiring a great deal of time. Moreover, only well-expanded phagophores were subjected to further analysis. Here we report Qautas (Quantitative autophagy-related structure analysis system), a high-throughput and comprehensive system for morphological analysis of autophagy-related structures using a combination of image processing and machine learning. We describe both the manual method and Qautas in detail.


Assuntos
Autofagia , Saccharomyces cerevisiae/citologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
PLoS One ; 12(7): e0181047, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704456

RESUMO

Autophagy, an intracellular degradation system, is highly conserved among eukaryotes from yeast to mammalian cells. In the yeast Saccharomyces cerevisiae, most Atg (autophagy-related) proteins, which are essential for autophagosome formation, are recruited to a restricted region close to the vacuole, termed the vacuole-isolation membrane contact site (VICS), upon induction of autophagy. Subsequently, the isolation membrane (IM) expands and sequesters cytoplasmic materials to become a closed autophagosome. In S. cerevisiae, the ubiquitin-like protein Atg8 is C-terminally conjugated to the phospholipid phosphatidylethanolamine (PE) to generate Atg8-PE. During autophagosome formation, Atg8-PE is cleaved by Atg4 to release delipidated Atg8 (Atg8G116) and PE. Although delipidation of Atg8-PE is important for autophagosome formation, it remains controversial whether the delipidation reaction is required for targeting of Atg8 to the VICS or for subsequent IM expansion. We used an IM visualization technique to clearly demonstrate that delipidation of Atg8-PE is dispensable for targeting of Atg8 to the VICS, but required for IM expansion. Moreover, by overexpressing Atg8G116, we showed that the delipidation reaction of Atg8-PE by Atg4 plays an important role in efficient expansion of the IM other than supplying unlipidated Atg8G116. Finally, we suggested the existence of biological membranes at the Atg8-labeled structures in Atg8-PE delipidation-defective cells, but not at those in atg2Δ cells. Taken together, it is likely that Atg2 is involved in localization of biological membranes to the VICS, where Atg4 is responsible for IM expansion.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Autofagossomos/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Membrana Celular/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Fagossomos/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA