Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Pathog ; 19(8): e1011554, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556494

RESUMO

Plasticity of influenza virus hemagglutinin (HA) conformation increases an opportunity to generate conserved non-native epitopes with unknown functionality. Here, we have performed an in-depth analysis of human monoclonal antibodies against a stem-helix region that is occluded in native prefusion yet exposed in postfusion HA. A stem-helix antibody, LAH31, provided IgG Fc-dependent cross-group protection by targeting a stem-helix kinked loop epitope, with a unique structure emerging in the postfusion state. The structural analysis and molecular modeling revealed key contact sites responsible for the epitope specificity and cross-group breadth that relies on somatically mutated light chain. LAH31 was inaccessible to the native prefusion HA expressed on cell surface; however, it bound to the HA structure present on infected cells with functional linkage to the Fc-mediated clearance. Our study uncovers a novel non-native epitope that emerges in the postfusion HA state, highlighting the utility of this epitope for a broadly protective antigen design.


Assuntos
Anticorpos Antivirais , Influenza Humana , Orthomyxoviridae , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo
2.
Nat Commun ; 14(1): 4198, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452031

RESUMO

SARS-CoV-2 Omicron subvariants have evolved to evade receptor-binding site (RBS) antibodies that exist in diverse individuals as public antibody clones. We rationally selected RBS antibodies resilient to mutations in emerging Omicron subvariants. Y489 was identified as a site of virus vulnerability and a common footprint of broadly neutralizing antibodies against the subvariants. Multiple Y489-binding antibodies were encoded by public clonotypes and additionally recognized F486, potentially accounting for the emergence of Omicron subvariants harboring the F486V mutation. However, a subclass of antibodies broadly neutralized BA.4/BA.5 variants via hydrophobic binding sites of rare clonotypes along with high mutation-resilience under escape mutation screening. A computationally designed antibody based on one of the Y489-binding antibodies, NIV-10/FD03, was able to bind XBB with any 486 mutation and neutralized XBB.1.5. The structural basis for the mutation-resilience of this Y489-binding antibody group may provide important insights into the design of therapeutics resistant to viral escape.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Sítios de Ligação , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
3.
J Virol ; 97(5): e0034023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166307

RESUMO

Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Cricetinae , Humanos , Camundongos , Animais , Vírus do Sarampo/fisiologia , Panencefalite Esclerosante Subaguda/genética , Hemaglutininas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas Recombinantes/metabolismo , Neurônios , Molécula 1 de Adesão Celular/metabolismo
4.
Nat Commun ; 14(1): 2671, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169744

RESUMO

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.


Assuntos
COVID-19 , Animais , Cricetinae , Filogenia , SARS-CoV-2/genética , Substituição de Aminoácidos , Bioensaio , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
Sci Adv ; 9(4): eadf3731, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706187

RESUMO

Measles virus (MeV), which is usually non-neurotropic, sometimes persists in the brain and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection, serving as a model for persistent viral infections. The persisting MeVs have hyperfusogenic mutant fusion (F) proteins that likely enable cell-cell fusion at synapses and "en bloc transmission" between neurons. We here show that during persistence, F protein fusogenicity is generally enhanced by cumulative mutations, yet mutations paradoxically reducing the fusogenicity may be selected alongside the wild-type (non-neurotropic) MeV genome. A mutant F protein having SSPE-derived substitutions exhibits lower fusogenicity than the hyperfusogenic F protein containing some of those substitutions, but by the wild-type F protein coexpression, the fusogenicity of the former F protein is enhanced, while that of the latter is nearly abolished. These findings advance the understanding of the long-term process of MeV neuropathogenicity and provide critical insight into the genotype-phenotype relationships of en bloc transmitted viruses.


Assuntos
Panencefalite Esclerosante Subaguda , Humanos , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Vírus do Sarampo/genética , Encéfalo/metabolismo , Mutação
6.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36198317

RESUMO

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Anticorpos Antivirais , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
J Virol ; 96(3): e0194921, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34788082

RESUMO

Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, usually causes acute febrile illness with skin rash but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). MeV bears two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. The H protein possesses a head domain that initially mediates receptor binding and a stalk domain that subsequently transmits the fusion-triggering signal to the F protein. We recently showed that cell adhesion molecule 1 (CADM1; also known as IGSF4A, Necl-2, and SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, and SynCAM2) are host factors enabling cell-cell membrane fusion mediated by hyperfusogenic F proteins of neuropathogenic MeVs as well as MeV spread between neurons lacking the known receptors. CADM1 and CADM2 interact in cis with the H protein on the same cell membrane, triggering hyperfusogenic F protein-mediated membrane fusion. Multiple isoforms of CADM1 and CADM2 containing various lengths of their stalk regions are generated by alternative splicing. Here, we show that only short-stalk isoforms of CADM1 and CADM2 predominantly expressed in the brain induce hyperfusogenic F protein-mediated membrane fusion. While the known receptors interact in trans with the H protein through its head domain, these isoforms can interact in cis even with the H protein lacking the head domain and trigger membrane fusion, presumably through its stalk domain. Thus, our results unveil a new mechanism of viral fusion triggering by host factors. IMPORTANCE Measles, an acute febrile illness with skin rash, is still an important cause of childhood morbidity and mortality worldwide. Measles virus (MeV), the causative agent of measles, may also cause a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. The disease is fatal, and no effective therapy is available. Recently, we reported that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV cell-to-cell spread in neurons. These molecules interact in cis with the MeV attachment protein on the same cell membrane, triggering the fusion protein and causing membrane fusion. CADM1 and CADM2 are known to exist in multiple splice isoforms. In this study, we report that their short-stalk isoforms can induce membrane fusion by interacting in cis with the viral attachment protein independently of its receptor-binding head domain. This finding may have important implications for cis-acting fusion triggering by host factors.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Células Gigantes/virologia , Hemaglutininas Virais/metabolismo , Interações Hospedeiro-Patógeno , Vírus do Sarampo/fisiologia , Sarampo/metabolismo , Sarampo/virologia , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Molécula 1 de Adesão Celular/genética , Células Cultivadas , Cricetinae , Modelos Biológicos , Ligação Proteica , Isoformas de Proteínas , Proteínas Virais de Fusão/metabolismo
8.
Chem Pharm Bull (Tokyo) ; 70(3): 199-201, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937844

RESUMO

MS is a powerful methodology for chemical screening to directly quantify substrates and products of enzymes, but its low throughput has been an issue. Recently, an acoustic liquid-handling apparatus (Echo®) used for rapid nano-dispensing has been coupled to a high-sensitivity mass spectrometer to create the Echo® MS system, and we applied this system to screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease inhibitors. Primary screening of 32033 chemical samples was completed in 12 h. Among the hits showing selective, dose-dependent 3CL-inhibitory activity, 8 compounds showed antiviral activity in cell-based assay.


Assuntos
Tratamento Farmacológico da COVID-19 , Inibidores de Proteases , Acústica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
9.
Immunity ; 54(10): 2385-2398.e10, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508662

RESUMO

Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Reações Cruzadas/imunologia , SARS-CoV-2/imunologia , Animais , Betacoronavirus/imunologia , Sítios de Ligação de Anticorpos , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , COVID-19/virologia , Cricetinae , Humanos , Switching de Imunoglobulina , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/imunologia , Camundongos , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Cell Rep ; 36(2): 109385, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34237284

RESUMO

Administration of convalescent plasma or neutralizing monoclonal antibodies (mAbs) is a potent therapeutic option for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, SARS-CoV-2 variants with mutations in the spike protein have emerged in many countries. To evaluate the efficacy of neutralizing antibodies induced in convalescent patients against emerging variants, we isolate anti-spike mAbs from two convalescent COVID-19 patients infected with prototypic SARS-CoV-2 by single-cell sorting of immunoglobulin-G-positive (IgG+) memory B cells. Anti-spike antibody induction is robust in these patients, and five mAbs have potent neutralizing activities. The efficacy of most neutralizing mAbs and convalescent plasma samples is maintained against B.1.1.7 and mink cluster 5 variants but is significantly decreased against variants B.1.351 from South Africa and P.1 from Brazil. However, mAbs with a high affinity for the receptor-binding domain remain effective against these neutralization-resistant variants. Rapid spread of these variants significantly impacts antibody-based therapies and vaccine strategies against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , COVID-19/virologia , Linhagem Celular , Células HEK293 , Humanos , Imunização Passiva , Masculino , Mutação , Testes de Neutralização , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
11.
iScience ; 24(4): 102367, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817567

RESUMO

Antiviral treatments targeting the coronavirus disease 2019 are urgently required. We screened a panel of already approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new agents having higher antiviral potentials than the drug candidates such as remdesivir and chroloquine in VeroE6/TMPRSS2 cells: the anti-inflammatory drug cepharanthine and human immunodeficiency virus protease inhibitor nelfinavir. Cepharanthine inhibited SARS-CoV-2 entry through the blocking of viral binding to target cells, while nelfinavir suppressed viral replication partly by protease inhibition. Consistent with their different modes of action, synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation was highlighted. Mathematical modeling in vitro antiviral activity coupled with the calculated total drug concentrations in the lung predicts that nelfinavir will shorten the period until viral clearance by 4.9 days and the combining cepharanthine/nelfinavir enhanced their predicted efficacy. These results warrant further evaluation of the potential anti-SARS-CoV-2 activity of cepharanthine and nelfinavir.

12.
J Virol ; 95(14): e0052821, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33910952

RESUMO

Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, is still an important cause of childhood morbidity and mortality worldwide. MeV usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). The disease is fatal, and no effective therapy is currently available. Although transsynaptic cell-to-cell transmission is thought to account for MeV propagation in the brain, neurons do not express the known receptors for MeV. Recent studies have shown that hyperfusogenic changes in the MeV fusion (F) protein play a key role in MeV propagation in the brain. However, how such mutant viruses spread in neurons remains unexplained. Here, we show that cell adhesion molecule 1 (CADM1; also known as IGSF4A, Necl-2, and SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors that enable MeV to cause membrane fusion in cells lacking the known receptors and to spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the envelope. However, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same cell membrane, causing the fusion protein triggering and membrane fusion. Knockdown of CADM1 and CADM2 inhibits syncytium formation and virus transmission between neurons that are both mediated by hyperfusogenic F proteins. Thus, our results unravel the molecular mechanism (receptor-mimicking cis-acting fusion triggering) by which MeV spreads transsynaptically between neurons, thereby causing SSPE. IMPORTANCE Measles virus (MeV), an enveloped RNA virus, is the causative agent of measles, which is still an important cause of childhood morbidity and mortality worldwide. Persistent MeV infection in the brain causes a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. However, how MeV spreads in neurons, which are mainly affected in SSPE, remains largely unknown. In this study, we demonstrate that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the viral membrane (envelope). Remarkably, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same membrane, triggering the fusion protein and causing membrane fusion, as viral receptors usually do in trans. Careful screening may lead to more examples of such "receptor-mimicking cis-acting fusion triggering" in other viruses.


Assuntos
Molécula 1 de Adesão Celular/fisiologia , Moléculas de Adesão Celular/fisiologia , Vírus do Sarampo/patogenicidade , Panencefalite Esclerosante Subaguda/virologia , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Células Gigantes/virologia , Humanos , Camundongos , Células Vero , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo
13.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118251

RESUMO

Mumps virus (MuV) is an important aerosol-transmitted human pathogen causing epidemic parotitis, meningitis, encephalitis, and deafness. MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid as a receptor. However, given the MuV tropism toward glandular tissues and the central nervous system, an additional glycan motif(s) may also serve as a receptor. Here, we performed a large-scale glycan array screen with MuV hemagglutinin-neuraminidase (MuV-HN) attachment proteins by using 600 types of glycans from The Consortium for Functional Glycomics Protein-Glycan Interaction Core in an effort to find new glycan receptor motif(s). According to the results of the glycan array, we successfully determined the crystal structures of MuV-HN proteins bound to newly identified glycan motifs, sialyl LewisX (SLeX) and the oligosaccharide portion of the GM2 ganglioside (GM2-glycan). Interestingly, the complex structures showed that SLeX and GM2-glycan share the same configuration with the reported trisaccharide motif, 3'-sialyllactose (3'-SL), at the binding site of MuV-HN, while SLeX and GM2-glycan have several unique interactions compared with those of 3'-SL. Thus, MuV-HN protein can allow an additional spatial modification in GM2-glycan and SLeX at the second and third carbohydrates from the nonreducing terminus of the core trisaccharide structure, respectively. Importantly, MuV entry was efficiently inhibited in the presence of 3'-SL, SLeX, or GM2-glycan derivatives, which indicates that these motifs can serve as MuV receptors. The α2,3-sialylated oligosaccharides, such as SLeX and 3'-sialyllactosamine, are broadly expressed in various tissues, and GM2 exists mainly in neural tissues and the adrenal gland. The distribution of these glycan motifs in human tissues/organs may have bearing on MuV tropism.IMPORTANCE Mumps virus (MuV) infection is characterized by parotid gland swelling and can cause pancreatitis, orchitis, meningitis, and encephalitis. MuV-related hearing loss is also a serious complication because it is usually irreversible. MuV outbreaks have been reported in many countries, even in high-vaccine-coverage areas. MuV has tropism toward glandular tissues and the central nervous system. To understand the unique MuV tropism, revealing the mechanism of receptor recognition by MuV is very important. Here, using a large-scale glycan array and X-ray crystallography, we show that MuV recognizes sialyl LewisX and GM2 ganglioside as receptors, in addition to a previously reported MuV receptor, a trisaccharide containing an α2,3-linked sialic acid. The flexible recognition of these glycan receptors by MuV may explain the unique tropism and pathogenesis of MuV. Structures will also provide a template for the development of effective entry inhibitors targeting the receptor-binding site of MuV.


Assuntos
Proteína HN/metabolismo , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Vírus da Caxumba/fisiologia , Receptores Virais/metabolismo , Ácidos Siálicos/metabolismo , Tropismo Viral , Ligação Viral , Cristalografia por Raios X , Proteína HN/química , Antígenos do Grupo Sanguíneo de Lewis/química , Análise em Microsséries , Ligação Proteica , Conformação Proteica , Ácidos Siálicos/química
15.
Angew Chem Int Ed Engl ; 57(24): 7215-7219, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29631320

RESUMO

Selenocysteine (Sec, U) confers new chemical properties on proteins. Improved tools are thus required that enable Sec insertion into any desired position of a protein. We report a facile method for synthesizing selenoproteins with multiple Sec residues by expanding the genetic code of Escherichia coli. We recently discovered allo-tRNAs, tRNA species with unusual structure, that are as efficient serine acceptors as E. coli tRNASer . Ser-allo-tRNA was converted into Sec-allo-tRNA by Aeromonas salmonicida selenocysteine synthase (SelA). Sec-allo-tRNA variants were able to read through five UAG codons in the fdhF mRNA coding for E. coli formate dehydrogenase H, and produced active FDHH with five Sec residues in E. coli. Engineering of the E. coli selenium metabolism along with mutational changes in allo-tRNA and SelA improved the yield and purity of recombinant human glutathione peroxidase 1 (to over 80 %). Thus, our allo-tRNAUTu system offers a new selenoprotein engineering platform.


Assuntos
Escherichia coli/genética , Glutationa Peroxidase/genética , Engenharia de Proteínas/métodos , Selenocisteína/genética , Selenoproteínas/genética , Aeromonas salmonicida/enzimologia , Aeromonas salmonicida/genética , Códon de Terminação/genética , Escherichia coli/enzimologia , Formiato Desidrogenases/genética , Código Genético , Humanos , Hidrogenase/genética , Complexos Multienzimáticos/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Proteínas Recombinantes/genética , Glutationa Peroxidase GPX1
16.
Nat Chem Biol ; 13(12): 1261-1266, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29035363

RESUMO

Pyrrolysyl-tRNA synthetase (PylRS) is a major tool in genetic code expansion using noncanonical amino acids, yet its structure and function are not completely understood. Here we describe the crystal structure of the previously uncharacterized essential N-terminal domain of this unique enzyme in complex with tRNAPyl. This structure explains why PylRS remains orthogonal in a broad range of organisms, from bacteria to humans. The structure also illustrates why tRNAPyl recognition by PylRS is anticodon independent: the anticodon does not contact the enzyme. Then, using standard microbiological culture equipment, we established a new method for laboratory evolution-a noncontinuous counterpart of the previously developed phage-assisted continuous evolution. With this method, we evolved novel PylRS variants with enhanced activity and amino acid specificity. Finally, we employed an evolved PylRS variant to determine its N-terminal domain structure and show how its mutations improve PylRS activity in the genetic encoding of a noncanonical amino acid.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Lisina/análogos & derivados , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Cristalografia por Raios X , Evolução Molecular Direcionada , Lisina/química , Lisina/metabolismo , Methanosarcina/enzimologia , Modelos Moleculares
17.
Proc Natl Acad Sci U S A ; 113(45): 12703-12708, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791189

RESUMO

The sulfur-containing nucleosides in transfer RNA (tRNAs) are present in all three domains of life; they have critical functions for accurate and efficient translation, such as tRNA structure stabilization and proper codon recognition. The tRNA modification enzymes ThiI (in bacteria and archaea) and Ncs6 (in archaea and eukaryotic cytosols) catalyze the formation of 4-thiouridine (s4U) and 2-thiouridine (s2U), respectively. The ThiI homologs were proposed to transfer sulfur via cysteine persulfide enzyme adducts, whereas the reaction mechanism of Ncs6 remains unknown. Here we show that ThiI from the archaeon Methanococcus maripaludis contains a [3Fe-4S] cluster that is essential for its tRNA thiolation activity. Furthermore, the archaeal and eukaryotic Ncs6 homologs as well as phosphoseryl-tRNA (Sep-tRNA):Cys-tRNA synthase (SepCysS), which catalyzes the Sep-tRNA to Cys-tRNA conversion in methanogens, also possess a [3Fe-4S] cluster similar to the methanogenic archaeal ThiI. These results suggest that the diverse tRNA thiolation processes in archaea and eukaryotic cytosols share a common mechanism dependent on a [3Fe-4S] cluster for sulfur transfer.

18.
Sci Adv ; 2(3): e1501397, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27051866

RESUMO

Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5'-end of truncated transfer RNA (tRNA) species in a Watson-Crick template-dependent manner. The reaction proceeds in two steps: the activation of the 5'-end by adenosine 5'-triphosphate (ATP)/guanosine 5'-triphosphate (GTP), followed by nucleotide addition. Structural analyses of the TLP and its reaction intermediates have revealed the atomic detail of the template-dependent elongation reaction in the 3'-5' direction. The enzyme creates two substrate binding sites for the first- and second-step reactions in the vicinity of one reaction center consisting of two Mg(2+) ions, and the two reactions are executed at the same reaction center in a stepwise fashion. When the incoming nucleotide is bound to the second binding site with Watson-Crick hydrogen bonds, the 3'-OH of the incoming nucleotide and the 5'-triphosphate of the tRNA are moved to the reaction center where the first reaction has occurred. That the 3'-5' elongation enzyme performs this elaborate two-step reaction in one catalytic center suggests that these two reactions have been inseparable throughout the process of protein evolution. Although TLP and Thg1 have similar tetrameric organization, the tRNA binding mode of TLP is different from that of Thg1, a tRNA(His)-specific G-1 addition enzyme. Each tRNA(His) binds to three of the four Thg1 tetramer subunits, whereas in TLP, tRNA only binds to a dimer interface and the elongation reaction is terminated by measuring the accepter stem length through the flexible ß-hairpin. Furthermore, mutational analyses show that tRNA(His) is bound to TLP in a similar manner as Thg1, thus indicating that TLP has a dual binding mode.


Assuntos
Nucleotidiltransferases/metabolismo , RNA de Transferência/metabolismo , Trifosfato de Adenosina/metabolismo , Anticódon , Catálise , Guanosina Trifosfato/metabolismo , Methanosarcina/enzimologia , Modelos Biológicos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleotidiltransferases/química , Ligação Proteica , Conformação Proteica , RNA de Transferência/química , RNA de Transferência/genética
19.
Croat Chem Acta ; 89(2): 163-174, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28239189

RESUMO

Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme's anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.

20.
Proc Natl Acad Sci U S A ; 112(2): 382-7, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548166

RESUMO

Many prokaryotes lack a tRNA synthetase to attach asparagine to its cognate tRNA(Asn), and instead synthesize asparagine from tRNA(Asn)-bound aspartate. This conversion involves two enzymes: a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) that forms Asp-tRNA(Asn), and a heterotrimeric amidotransferase GatCAB that amidates Asp-tRNA(Asn) to form Asn-tRNA(Asn) for use in protein synthesis. ND-AspRS, GatCAB, and tRNA(Asn) may assemble in an ∼400-kDa complex, known as the Asn-transamidosome, which couples the two steps of asparagine biosynthesis in space and time to yield Asn-tRNA(Asn). We report the 3.7-Šresolution crystal structure of the Pseudomonas aeruginosa Asn-transamidosome, which represents the most common machinery for asparagine biosynthesis in bacteria. We show that, in contrast to a previously described archaeal-type transamidosome, a bacteria-specific GAD domain of ND-AspRS provokes a principally new architecture of the complex. Both tRNA(Asn) molecules in the transamidosome simultaneously serve as substrates and scaffolds for the complex assembly. This architecture rationalizes an elevated dynamic and a greater turnover of ND-AspRS within bacterial-type transamidosomes, and possibly may explain a different evolutionary pathway of GatCAB in organisms with bacterial-type vs. archaeal-type Asn-transamidosomes. Importantly, because the two-step pathway for Asn-tRNA(Asn) formation evolutionarily preceded the direct attachment of Asn to tRNA(Asn), our structure also may reflect the mechanism by which asparagine was initially added to the genetic code.


Assuntos
Asparagina/biossíntese , Pseudomonas aeruginosa/metabolismo , RNA de Transferência de Asparagina/metabolismo , Sequência de Aminoácidos , Aspartato-tRNA Ligase/química , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , RNA de Transferência de Asparagina/genética , Homologia de Sequência de Aminoácidos , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Aminoacilação de RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA