Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Methods ; 20(1): 8, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216953

RESUMO

BACKGROUND: In drought periods, water use efficiency depends on the capacity of roots to extract water from deep soil. A semi-field phenotyping facility (RadiMax) was used to investigate above-ground and root traits in spring barley when grown under a water availability gradient. Above-ground traits included grain yield, grain protein concentration, grain nitrogen removal, and thousand kernel weight. Root traits were obtained through digital images measuring the root length at different depths. Two nearest-neighbor adjustments (M1 and M2) to model spatial variation were used for genetic parameter estimation and genomic prediction (GP). M1 and M2 used (co)variance structures and differed in the distance function to calculate between-neighbor correlations. M2 was the most developed adjustment, as accounted by the Euclidean distance between neighbors. RESULTS: The estimated heritabilities ([Formula: see text]) ranged from low to medium for root and above-ground traits. The genetic coefficient of variation ([Formula: see text]) ranged from 3.2 to 7.0% for above-ground and 4.7 to 10.4% for root traits, indicating good breeding potential for the measured traits. The highest [Formula: see text] observed for root traits revealed that significant genetic change in root development can be achieved through selection. We studied the genotype-by-water availability interaction, but no relevant interaction effects were detected. GP was assessed using leave-one-line-out (LOO) cross-validation. The predictive ability (PA) estimated as the correlation between phenotypes corrected by fixed effects and genomic estimated breeding values ranged from 0.33 to 0.49 for above-ground and 0.15 to 0.27 for root traits, and no substantial variance inflation in predicted genetic effects was observed. Significant differences in PA were observed in favor of M2. CONCLUSIONS: The significant [Formula: see text] and the accurate prediction of breeding values for above-ground and root traits revealed that developing genetically superior barley lines with improved root systems is possible. In addition, we found significant spatial variation in the experiment, highlighting the relevance of correctly accounting for spatial effects in statistical models. In this sense, the proposed nearest-neighbor adjustments are flexible approaches in terms of assumptions that can be useful for semi-field or field experiments.

2.
Plant Cell Environ ; 45(3): 823-836, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806183

RESUMO

Deep rooting winter wheat genotypes can reduce nitrate leaching losses and increase N uptake. We aimed to investigate which deep root traits are correlated to deep N uptake and to estimate genetic variation in root traits and deep 15 N tracer uptake. In 2 years, winter wheat genotypes were grown in RadiMax, a semifield root-screening facility. Minirhizotron root imaging was performed three times during the main growing season. At anthesis, 15 N was injected via subsurface drip irrigation at 1.8 m depth. Mature ears from above the injection area were analysed for 15 N content. From minirhizotron image-based root length data, 82 traits were constructed, describing root depth, density, distribution and growth aspects. Their ability to predict 15 N uptake was analysed with the least absolute shrinkage and selection operator (LASSO) regression. Root traits predicted 24% and 14% of tracer uptake variation in 2 years. Both root traits and genotype showed significant effects on tracer uptake. In 2018, genotype and the three LASSO-selected root traits predicted 41% of the variation in tracer uptake, in 2019 genotype and one root trait predicted 48%. In both years, one root trait significantly mediated the genotype effect on tracer uptake. Deep root traits from minirhizotron images can predict deep N uptake, indicating the potential to breed deep-N-uptake-genotypes.


Assuntos
Nitratos , Raízes de Plantas , Genótipo , Fenótipo , Raízes de Plantas/genética , Triticum/genética
3.
Plant Genome ; 13(3): e20049, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33217208

RESUMO

Patterns and level of cytosine methylation vary widely among plant species and are associated with genome size as well as the proportion of transposons and other repetitive elements in the genome. We explored epigenetic patterns and diversity in a representative proportion of the spring barley (Hordeum vulgare L.) genome across several commercial and historical cultivars. This study adapted a genotyping-by-sequencing (GBS) approach for the detection of methylated cytosines in genomic DNA. To analyze the data, we developed WellMeth, a complete pipeline for analysis of reduced representation bisulfite sequencing. WellMeth enabled quantification of context-specific DNA methylation at the single-base resolution as well as identification of differentially methylated sites (DMCs) and regions (DMRs). On average, DNA methylation levels were significantly higher than what is commonly observed in many plants species, reaching over 10-fold higher levels than those in Arabidopsis thaliana (L.) Heynh. in the CHH methylation. Preferential methylation was observed within and at the edges of long-terminal repeats (LTR) retrotransposons Gypsy and Copia. From a pairwise comparison of cultivars, numerous DMRs could be identified of which more than 5,000 were conserved within the analyzed set of barley cultivars. The subset of regions overlapping with genes showed enrichment in gene ontology (GO) categories associated with chromatin and cellular structure and organization. A significant correlation between genetic and epigenetic distances suggests that a considerable portion of methylated regions is under strict genetic control in barley. The data presented herein represents the first step in efforts toward a better understanding of genome-level structural and functional aspects of methylation in barley.


Assuntos
Metilação de DNA , Hordeum , Citosina , Hordeum/genética , Sulfitos
4.
Plant Methods ; 16: 90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625241

RESUMO

BACKGROUND: Deeper roots help plants take up available resources in deep soil ensuring better growth and higher yields under conditions of drought. A large-scale semi-field root phenotyping facility was developed to allow a water availability gradient and detect potential interaction of genotype by water availability gradient. Genotyped winter wheat lines were grown as rows in four beds of this facility, where indirect genetic effects from neighbors could be important to trait variation. The objective was to explore the possibility of genomic prediction for grain-related traits and deep root traits collected via images taken in a minirhizotron tube under each row of winter wheat measured. RESULTS: The analysis comprised four grain-related traits: grain yield, thousand-kernel weight, protein concentration, and total nitrogen content measured on each half row that were harvested separately. Two root traits, total root length between 1.2 and 2 m depth and root length in four intervals on each tube were also analyzed. Two sets of models with or without the effects of neighbors from both sides of each row were applied. No interaction between genotypes and changing water availability were detected for any trait. Estimated genomic heritabilities ranged from 0.263 to 0.680 for grain-related traits and from 0.030 to 0.055 for root traits. The coefficients of genetic variation were similar for grain-related and root traits. The prediction accuracy of breeding values ranged from 0.440 to 0.598 for grain-related traits and from 0.264 to 0.334 for root traits. Including neighbor effects in the model generally increased the estimated genomic heritabilities and accuracy of predicted breeding values for grain yield and nitrogen content. CONCLUSIONS: Similar relative amounts of additive genetic variance were found for both yield traits and root traits but no interaction between genotypes and water availability were detected. It is possible to obtain accurate genomic prediction of breeding values for grain-related traits and reasonably accurate predicted breeding values for deep root traits using records from the semi-field facility. Including neighbor effects increased the estimated additive genetic variance of grain-related traits and accuracy of predicting breeding values. High prediction accuracy can be obtained although heritability is low.

5.
New Phytol ; 214(2): 632-643, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28098948

RESUMO

Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigated in a panel of diverse maize lines. A panel of 30 maize lines was evaluated with and without inoculation with arbuscular mycorrhizal fungi. The line Oh43 was identified to show superior response and, along with five other reference lines, was characterized in greater detail in a split-compartment system, using 33 P to quantify mycorrhizal phosphorus uptake. Changes in relative growth indicated variation in host capacity to profit from the symbiosis. Shoot phosphate content, abundance of root-internal and -external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Superior response in Oh43 is correlated with extensive development of root-external hyphae, accumulation of specific Pht1 transcripts and high phosphorus uptake by mycorrhizal plants. The data indicate that host genetic factors influence fungal growth strategy with an impact on plant performance.


Assuntos
Hifas/metabolismo , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia , Biomassa , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA