Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Sci Transl Med ; 16(766): eadj1277, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321269

RESUMO

Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell-deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell-IgG-FcγR axis is required for the development of neuropathic pain in mice.


Assuntos
Linfócitos B , Gânglios Espinais , Hiperalgesia , Imunoglobulina G , Neuralgia , Receptores de IgG , Transdução de Sinais , Animais , Receptores de IgG/metabolismo , Neuralgia/metabolismo , Imunoglobulina G/metabolismo , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Gânglios Espinais/metabolismo , Linfócitos B/metabolismo , Linfócitos B/imunologia , Feminino , Camundongos , Comportamento Animal , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/complicações
2.
Pain ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39324959

RESUMO

ABSTRACT: Nerve growth factor (NGF)-R100E is a mutated form of human recombinant NGF that reduces the binding of NGF to its p75NTR receptor while retaining its affinity toward the TrkA receptor. Here, we used human wild type NGF and NGF-R100E knock-in mice to investigate the effects of this NGF mutation on inflammation-induced pain-related behaviors and bone loss. The hNGF-R100E mutation did not alter the nerve fiber density in the sciatic nerve, ankle joint synovium, and skin of naïve mice. Withdrawal responses to mechanical, thermal, and cold stimuli before and after joint inflammation induced by intra-articular injection of complete Freund adjuvant (CFA) were similar between human recombinant nerve growth factor-wild type and hNGF-R100E male and female mice while weight bearing and gait analysis revealed significant differences. Intriguingly, hNGF-R100E male and female mice showed only mild changes, indicating lower degrees of deep joint-related pain compared to their wild type counterparts. Furthermore, micro-CT analysis demonstrated that hNGF-R100E female mice, but not males, were protected from CFA-induced bone loss, and mRNA analysis showed a different gene regulation indicating a sex-dependent relationship between NGF, inflammation, and bone loss. In conclusion, our study reveals that the hNGF-R100E mutation renders mice insensitive to inflammation-induced impact on joint loading and gait while preserving the development of the peripheral nociceptive neurons and sensitivity to punctate stimulation of the skin. Notably, the mutation uncovers a sex-dependent relationship between NGF and inflammation-induced bone loss. These findings offer valuable insights into NGF as a target for pain management and the interplay between NGF and bone architecture.

3.
Pain Rep ; 9(4): e1167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873615

RESUMO

A 2-day closed workshop was held in Liverpool, United Kingdom, to discuss the results of research concerning symptom-based disorders (SBDs) caused by autoantibodies, share technical knowledge, and consider future plans. Twenty-two speakers and 14 additional participants attended. This workshop set out to consolidate knowledge about the contribution of autoantibodies to SBDs. Persuasive evidence for a causative role of autoantibodies in disease often derives from experimental "passive transfer" approaches, as first established in neurological research. Here, serum immunoglobulin (IgM or IgG) is purified from donated blood and transferred to rodents, either systemically or intrathecally. Rodents are then assessed for the expression of phenotypes resembling the human condition; successful phenotype transfer is considered supportive of or proof for autoimmune pathology. Workshop participants discussed passive transfer models and wider evidence for autoantibody contribution to a range of SBDs. Clinical trials testing autoantibody reduction were presented. Cornerstones of both experimental approaches and clinical trial parameters in this field were distilled and presented in this article. Mounting evidence suggests that immunoglobulin transfer from patient donors often induces the respective SBD phenotype in rodents. Understanding antibody binding epitopes and downstream mechanisms will require substantial research efforts, but treatments to reduce antibody titres can already now be evaluated.

4.
Pain ; 165(7): e65-e79, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900144

RESUMO

ABSTRACT: Recent evidence highlights the importance of the neuroimmune interface, including periphery-to-central nervous system (CNS) neuroimmune crosstalk, in chronic pain. Although neuroinflammatory processes have been implicated in central sensitization for a long time, their potential neuroprotective and analgesic effects remain relatively elusive. We have explored the relationships between cytokine expression and symptom severity, and candidates for periphery-to-CNS crosstalk. Patients with degenerative disk disease (DDD) (nociceptive pain) or patients with lumbar disk herniation (LDH) with radiculopathy (predominantly neuropathic pain) completed questionnaires regarding pain and functional disability, underwent quantitative sensory testing, and provided blood and cerebrospinal fluid (CSF) samples. Proximity extension assay (PEA) was used to measure the levels of 92 inflammatory proteins in the CSF and serum from a total of 160 patients and controls, and CSF/serum albumin quotients was calculated for patients with DDD and patients with LDH. We found signs of neuroimmune activation, in the absence of systemic inflammation. Regarding periphery-to-CNS neuroimmune crosstalk, there were significant associations between several cytokines and albumin quotient, despite the latter being primarily at subclinical levels. The cytokines CCL11, CD5, IL8, and MMP-10 were elevated in the CSF, had positive correlations between CSF and serum levels, and associated in a nonlinear manner with back, but not leg, pain intensity in the LDH, but not the DDD, group. In conclusion, we found evidence for neuroimmune activation in the CNS of both patient groups in the absence of systemic inflammation and signs of a communication between CSF and serum. Complex and disease-specific associations were found between cytokines in CSF and back pain intensity.


Assuntos
Dor Crônica , Citocinas , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Humanos , Masculino , Feminino , Citocinas/líquido cefalorraquidiano , Citocinas/sangue , Pessoa de Meia-Idade , Deslocamento do Disco Intervertebral/líquido cefalorraquidiano , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/líquido cefalorraquidiano , Degeneração do Disco Intervertebral/imunologia , Adulto , Dor Crônica/líquido cefalorraquidiano , Dor Crônica/imunologia , Dor Crônica/sangue , Idoso , Vértebras Lombares , Medição da Dor/métodos , Neuroimunomodulação/fisiologia
5.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674069

RESUMO

Bladder pain is a prominent symptom in Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). We studied spinal mechanisms of bladder pain in mice using a model where repeated activation of intravesical Protease Activated Receptor-4 (PAR4) results in persistent bladder hyperalgesia (BHA) with little or no bladder inflammation. Persistent BHA is mediated by spinal macrophage migration inhibitory factor (MIF), and is associated with changes in lumbosacral proteomics. We investigated the contribution of individual spinal MIF receptors to persistent bladder pain as well as the spinal proteomics changes associated with relief of persistent BHA by spinal MIF antagonism. Female mice with persistent BHA received either intrathecal (i.t.) MIF monoclonal antibodies (mAb) or mouse IgG1 (isotype control antibody). MIF antagonism temporarily reversed persistent BHA (peak effect: 2 h), while control IgG1 had no effect. Moreover, i.t. antagonism of the MIF receptors CD74 and C-X-C chemokine receptor type 4 (CXCR4) partially reversed persistent BHA. For proteomics experiments, four separate groups of mice received either repeated intravesical scrambled peptide and sham i.t. injection (control, no pain group) or repeated intravesical PAR4 and: sham i.t.; isotype IgG1 i.t. (15 µg); or MIF mAb (15 µg). L6-S1 spinal segments were excised 2 h post-injection and examined for proteomics changes using LC-MS/MS. Unbiased proteomics analysis identified and relatively quantified 6739 proteins. We selected proteins that showed significant changes compared to control (no pain group) after intravesical PAR4 (sham or IgG i.t. treatment) and showed no significant change after i.t. MIF antagonism. Six proteins decreased during persistent BHA (V-set transmembrane domain-containing protein 2-like confirmed by immunohistochemistry), while two proteins increased. Spinal MIF antagonism reversed protein changes. Therefore, spinal MIF and MIF receptors mediate persistent BHA and changes in specific spinal proteins. These novel MIF-modulated spinal proteins represent possible new targets to disrupt spinal mechanisms that mediate persistent bladder pain.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Proteômica , Receptores CXCR4 , Animais , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Feminino , Camundongos , Proteômica/métodos , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Hiperalgesia/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Cistite Intersticial/metabolismo , Cistite Intersticial/patologia , Medula Espinal/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Modelos Animais de Doenças , Receptores Imunológicos/metabolismo , Receptores Imunológicos/antagonistas & inibidores
6.
ACS Chem Neurosci ; 15(2): 236-244, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38150531

RESUMO

Compartmentalized cell cultures (CCCs) provide the possibility to study mechanisms of neurodegenerative diseases, such as spreading of misfolded proteins in Alzheimer's or Parkinson's disease or functional changes in, e.g., chronic pain, in vitro. However, many CCC devices do not provide the necessary capacity for identifying novel mechanisms, targets, or drugs in a drug discovery context. Here, we present a high-capacity cell culture microtiter microfluidic plate compliant with American National Standard Institute of the Society for Laboratory Automation and Screening (ANSI/SLAS) standards that allows to parallelize up to 96 CCCs/experimental units, where each experimental unit comprises three microchannel-connected compartments. The plate design allows the specific treatment of cells in individual compartments through the application of a fluidic barrier. Moreover, the compatibility of the plate with neuronal cultures was confirmed with rodent primary as well as human-induced pluripotent stem cell-derived neurons of the central or peripheral nervous system for up to 14 days in culture. Using immunocytochemistry, we demonstrated that the plate design restricts neuronal soma to individual compartments, while axons, but not dendrites, can grow through the connecting microchannels to neighboring compartments. In addition, we show that neurons are spontaneously active and, as deemed by the appearance of synchronous depolarizations in neighboring compartments, are synaptically coupled. In summary, the design of the microfluidic plate allows for both morphological and functional studies of neurological in vitro cultures with increased capacity to support identification of novel mechanisms, targets, or drugs.


Assuntos
Microfluídica , Doença de Parkinson , Humanos , Axônios/metabolismo , Neurônios , Técnicas de Cultura de Células , Doença de Parkinson/metabolismo
7.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117255

RESUMO

In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.


Assuntos
Células Endoteliais , Gânglios Espinais , Humanos , Macrófagos , Pericitos , Permeabilidade
8.
Neurobiol Pain ; 14: 100142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099281

RESUMO

Circular RNAs are a novel class of RNA molecules that are covalently closed into a ring structure. They are an epigenetic regulatory mechanism, and their best-studied function is regulation of microRNA activity. As such circular RNAs may be involved in the switch from acute to chronic pain. They have previously been studied in the context of neuropathic pain models, but their importance in inflammation-induced chronic pain models is unexplored. Microarray analysis of dorsal root ganglia collected in the late phase of collagen antibody-induced arthritis (day 59) were used to elucidate the relevance of circular RNAs in the mechanical hypersensitivity caused by this model. 120 circular RNA genes were found to be significantly differentially regulated in female BALB/c mice with collagen antibody-induced arthritis. Six genes were chosen for RT-qPCR analysis in the late (day 54-60) as well as the inflammatory (day 11-12) phase of this model. This validated an increase in circNufip1 expression in the late phase of collagen antibody-induced arthritis. Additionally, it was found that circVps13 and circMicall1 are upregulated in the inflammatory phase. Interestingly, no changes were found in dorsal root ganglia from mice injected with Freund's Complete Adjuvant (day 3) nor mice with spared nerve injury (day 20), despite their similarities to inflammatory and late phase collagen antibody-induced arthritis, respectively. This study provides evidence that mild circular RNA changes occur in dorsal root ganglia of mice with collagen antibody-induced arthritis that are, bioinformatically, predicated to be involved in processes relevant to sensitization.

9.
Brain Behav Immun ; 114: 371-382, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683961

RESUMO

Recent translational work has shown that fibromyalgia might be an autoimmune condition with pathogenic mechanisms mediated by a peripheral, pain-inducing action of immunoglobulin G (IgG) antibodies binding to satellite glia cells (SGC) in the dorsal root ganglia. A first clinical assessment of the postulated autoimmunity showed that fibromyalgia subjects (FMS) had elevated levels of antibodies against SGC (termed anti-SGC IgG) compared to healthy controls and that anti-SGC IgG were associated with a more severe disease status. The overarching aim of the current study was to determine whether the role of anti-SGC IgG in driving pain is exclusively through peripheral mechanisms, as indirectly shown so far, or could be attributed also to central mechanisms. To this end, we wanted to first confirm, in a larger cohort of FMS, the relation between anti-SGC IgG and pain-related clinical measures. Secondly, we explored the associations of these autoantibodies with brain metabolite concentrations (assessed via magnetic resonance spectroscopy, MRS) and pressure-evoked cerebral pain processing (assessed via functional magnetic resonance imaging, fMRI) in FMS. Proton MRS was performed in the thalamus and rostral anterior cingulate cortex (rACC) of FMS and concentrations of a wide spectrum of metabolites were assessed. During fMRI, FMS received individually calibrated painful pressure stimuli corresponding to low and high pain intensities. Our results confirmed a positive correlation between anti-SGC IgG and clinical measures assessing condition severity. Additionally, FMS with high anti-SGC IgG levels had higher pain intensity and a worse disease status than FMS with low anti-SGC IgG levels. Further, anti-SGC IgG levels negatively correlated with metabolites such as scyllo-inositol in thalamus and rACC as well as with total choline and macromolecule 12 in thalamus, thus linking anti-SGC IgG levels to the concentration of metabolites in the brain of FMS. However, anti-SGC IgG levels in FMS were not associated with the sensitivity to pressure pain or the cerebral processing of evoked pressure pain. Taken together, our results suggest that anti-SGC IgG might be clinically relevant for spontaneous, non-evoked pain. Our current and previous translational and clinical findings could provide a rationale to try new antibody-related treatments in FMS.

10.
Elife ; 122023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401759

RESUMO

Variations in B cell numbers are associated with polycystic ovary syndrome (PCOS) through unknown mechanisms. Here, we demonstrate that B cells are not central mediators of PCOS pathology and that their frequencies are altered as a direct effect of androgen receptor activation. Hyperandrogenic women with PCOS have increased frequencies of age-associated double-negative B memory cells and increased levels of circulating immunoglobulin M (IgM). However, the transfer of serum IgG from women into wild-type female mice induces only an increase in body weight. Furthermore, RAG1 knockout mice, which lack mature T- and B cells, fail to develop any PCOS-like phenotype. In wild-type mice, co-treatment with flutamide, an androgen receptor antagonist, prevents not only the development of a PCOS-like phenotype but also alterations of B cell frequencies induced by dihydrotestosterone (DHT). Finally, B cell-deficient mice, when exposed to DHT, are not protected from developing a PCOS-like phenotype. These results urge further studies on B cell functions and their effects on autoimmune comorbidities highly prevalent among women with PCOS.


Polycystic ovary syndrome is a lifelong condition associated with disrupted hormone levels, which affects around 15-20% of women. Characterised by increased levels of male sex hormones released by ovaries and adrenal glands, the condition affects menstrual cycles and can cause infertility and diabetes. Alongside the increase in male sex hormones, changes in the number of B cells have recently been observed in polycystic ovary syndrome. B cells produce antibodies that are important for fighting infection. However, it is thought that they might aggravate the condition by releasing antibodies and other inflammatory molecules which instead attack the body. It remained unclear whether changes in the B cell numbers were a result of excessive hormone levels or whether the B cells themselves were responsible for increasing the levels of male sex hormones. Ascani et al. showed that exposing female mice to excess male sex hormones leads to symptoms of polycystic ovary syndrome and causes the same changes to B cell frequencies as observed in women. This effect was prevented by simultaneously treating mice with a drug that blocks the action of male sex hormones. On the other hand, transferring antibodies from women with polycystic ovary syndrome to mice led to greater body weight and variation in B cell numbers. However, it did not result in clear symptoms of polycystic ovary syndrome. Furthermore, mice without B cells still developed symptoms when exposed to male sex hormones, showing that B cells alone are not solely responsible for the development of the condition. Taken together, the experiments show that B cells are not central mediators of polycystic ovary syndrome and the variation in their numbers is due to excess male sex hormones. This raises the question of whether B cells are an appropriate target for the treatment of this complex condition and paves the way for studies on how other immune cells are altered by hormones. Future work should also investigate how B cell function affects symptoms associated with polycystic ovary syndrome, given the association between antibody transfer and weight gain in mice.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Androgênios , Peso Corporal , Fenótipo
11.
Brain Behav Immun ; 113: 212-227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437817

RESUMO

Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.


Assuntos
Artrite Reumatoide , Autoanticorpos , Animais , Camundongos , Receptores de IgG , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Dor
12.
Cell Mol Life Sci ; 80(5): 128, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37084140

RESUMO

Outcomes following human dense connective tissue (DCT) repair are often variable and suboptimal, resulting in compromised function and development of chronic painful degenerative diseases. Moreover, biomarkers and mechanisms that guide good clinical outcomes after DCT injuries are mostly unknown. Here, we characterize the proteomic landscape of DCT repair following human Achilles tendon rupture and its association with long-term patient-reported outcomes. Moreover, the potential regulatory mechanisms of relevant biomarkers were assessed partly by gene silencing experiments. A mass-spectrometry based proteomic approach quantified a large number (769) of proteins, including 51 differentially expressed proteins among 20 good versus 20 poor outcome patients. A novel biomarker, elongation factor-2 (eEF2) was identified as being strongly prognostic of the 1-year clinical outcome. Further bioinformatic and experimental investigation revealed that eEF2 positively regulated autophagy, cell proliferation and migration, as well as reduced cell death and apoptosis, leading to improved DCT repair and outcomes. Findings of eEF2 as novel prognostic biomarker could pave the way for new targeted treatments to improve healing outcomes after DCT injuries.Trial registration: NCT02318472 registered 17 December 2014 and NCT01317160 registered 17 March 2011, with URL http://clinicaltrials.gov/ct2/show/NCT02318472 and http://clinicaltrials.gov/ct2/show/study/NCT01317160 .


Assuntos
Tendão do Calcâneo , Tecido Conjuntivo , Fator 2 de Elongação de Peptídeos , Humanos , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Apoptose , Autofagia/genética , Biomarcadores , Morte Celular , Tecido Conjuntivo/metabolismo , Proteômica
13.
Adv Healthc Mater ; 12(24): e2300550, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37069480

RESUMO

The organic electronic ion pump (OEIP) is an on-demand electrophoretic drug delivery device, that via electronic to ionic signal conversion enables drug delivery without additional pressure or volume changes. The fundamental component of OEIPs is their polyelectrolyte membranes which are shaped into ionic channels that conduct and deliver ionic drugs, with high spatiotemporal resolution. The patterning of these membranes is essential in OEIP devices and is typically achieved using laborious microprocessing techniques. Here, the development of an inkjet printable formulation of polyelectrolyte is reported, based on a custom anionically functionalized hyperbranched polyglycerol (i-AHPG). This polyelectrolyte ink greatly simplifies the fabrication process and is used in the production of free-standing OEIPs on flexible polyimide (PI) substrates. Both i-AHPG and the OEIP devices are characterized, exhibiting favorable iontronic characteristics of charge selectivity and the ability to transport aromatic compounds. Further, the applicability of these technologies is demonstrated by the transport and delivery of the pharmaceutical compound bupivacaine to dorsal root ganglion cells with high spatial precision and effective nerve blocking, highlighting the applicability of these technologies for biomedical scenarios.


Assuntos
Eletrônica , Microtecnologia , Polieletrólitos , Sistemas de Liberação de Medicamentos , Íons/metabolismo , Bombas de Íon , Preparações Farmacêuticas
14.
Pain ; 164(8): 1828-1840, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943275

RESUMO

ABSTRACT: Transferring fibromyalgia patient immunoglobulin G (IgG) to mice induces pain-like behaviour, and fibromyalgia IgG binds mouse and human satellite glia cells (SGCs). These findings suggest that autoantibodies could be part of fibromyalgia pathology. However, it is unknown how frequently fibromyalgia patients have anti-SGC antibodies and how anti-SGC antibodies associate with disease severity. Here, we quantified serum or plasma anti-SGC IgG levels in 2 fibromyalgia cohorts from Sweden and Canada using an indirect immunofluorescence murine cell culture assay. Fibromyalgia serum IgG binding to human SGCs in human dorsal root ganglia tissue sections was also assessed by immunofluorescence. In the cell culture assay, anti-SGC IgG levels were increased in both fibromyalgia cohorts compared with control group. Elevated anti-SGC IgG was associated with higher levels of self-reported pain in both cohorts, and higher fibromyalgia impact questionnaire scores and increased pressure sensitivity in the Swedish cohort. Anti-SGC IgG levels were not associated with fibromyalgia duration. Swedish fibromyalgia (FM) patients were clustered into FM-severe and FM-mild groups, and the FM-severe group had elevated anti-SGC IgG compared with the FM-mild group and control group. Anti-SGC IgG levels detected in culture positively correlated with increased binding to human SGCs. Moreover, the FM-severe group had elevated IgG binding to human SGCs compared with the FM-mild and control groups. These results demonstrate that a subset of fibromyalgia patients have elevated levels of anti-SGC antibodies, and the antibodies are associated with more severe fibromyalgia symptoms. Screening fibromyalgia patients for anti-SGC antibodies could provide a path to personalized treatment options that target autoantibodies and autoantibody production.


Assuntos
Fibromialgia , Humanos , Animais , Camundongos , Fibromialgia/diagnóstico , Dor , Autoanticorpos , Imunoglobulina G , Inquéritos e Questionários
15.
Biomolecules ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830710

RESUMO

Lipids, especially lysophosphatidylcholine LPC16:0, have been shown to be involved in chronic joint pain through the activation of acid-sensing ion channels (ASIC3). The aim of the present study was to investigate the lipid contents of the synovial fluids from controls and patients suffering from chronic joint pain in order to identify characteristic lipid signatures associated with specific joint diseases. For this purpose, lipids were extracted from the synovial fluids and analyzed by mass spectrometry. Lipidomic analyses identified certain choline-containing lipid classes and molecular species as biomarkers of chronic joint pain, regardless of the pathology, with significantly higher levels detected in the patient samples. Moreover, correlations were observed between certain lipid levels and the type of joint pathologies. Interestingly, LPC16:0 levels appeared to correlate with the metabolic status of patients while other choline-containing lipids were more specifically associated with the inflammatory state. Overall, these data point at selective lipid species in synovial fluid as being strong predictors of specific joint pathologies which could help in the selection of the most adapted treatment.


Assuntos
Artropatias , Humanos , Artropatias/metabolismo , Líquido Sinovial/química , Lipídeos/análise , Biomarcadores/metabolismo , Artralgia/metabolismo
16.
Nat Commun ; 14(1): 691, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36754962

RESUMO

Although elevated levels of anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA), the in vivo functions of these antibodies remain unclear. Here, we have expressed monoclonal ACPAs derived from patients with RA, and analyzed their functions in mice, as well as their specificities. None of the ACPAs showed arthritogenicity nor induced pain-associated behavior in mice. However, one of the antibodies, clone E4, protected mice from antibody-induced arthritis. E4 showed a binding pattern restricted to skin, macrophages and dendritic cells in lymphoid tissue, and cartilage derived from mouse and human arthritic joints. Proteomic analysis confirmed that E4 strongly binds to macrophages and certain RA synovial fluid proteins such as α-enolase. The protective effect of E4 was epitope-specific and dependent on the interaction between E4-citrullinated α-enolase immune complexes with FCGR2B on macrophages, resulting in increased IL-10 secretion and reduced osteoclastogenesis. These findings suggest that a subset of ACPAs have therapeutic potential in RA.


Assuntos
Artrite Reumatoide , Autoanticorpos , Humanos , Animais , Camundongos , Proteômica , Fosfopiruvato Hidratase
17.
Arthritis Rheumatol ; 75(2): 164-170, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35930718

RESUMO

OBJECTIVE: The appearance of anti-citrullinated protein antibodies (ACPAs) in the circulation represents a major risk factor for developing rheumatoid arthritis (RA). Patient-derived ACPAs have been shown to induce pain and bone erosion in mice, suggesting an active role in the pathogenicity of RA. We undertook this study to investigate whether ACPAs can induce tenosynovitis, an early sign of RA, in addition to pain and bone loss and whether these symptoms are dependent on peptidyl arginine deiminase 4 (PAD4). METHODS: Monoclonal ACPAs generated from plasma cells of RA patients were transferred to wild-type and PAD4-deficient mice. Pain-like behavior and macroscopic inflammation were monitored for a period of 4 weeks, followed by the analyses of tenosynovitis in the ankle joints using magnetic resonance imaging (MRI) and bone microarchitecture in the tibia using an X-ray microscope. Microscopic changes in the tendon sheath were analyzed in decalcified ankle joint sections. RESULTS: The combination of 2 monoclonal ACPAs (1325:04C03 and 1325:01B09) induced long-lasting pain-like behavior and trabecular bone loss in mice. Although no synovitis was observed macroscopically, we detected tenosynovitis in the ACPA-injected mice by MRI. Microscopic analyses of the joints revealed a cellular hyperplasia and a consequent enlargement of the tendon sheath in the ACPA-treated group. In PAD4-/- mice, the effects of ACPAs on pain-like behavior, tenosynovitis, and bone loss were significantly reduced. CONCLUSION: Monoclonal ACPAs can induce tenosynovitis in addition to pain and bone loss via mechanisms dependent on PAD4-mediated citrullination.


Assuntos
Artrite Reumatoide , Proteína-Arginina Desiminase do Tipo 4 , Tenossinovite , Animais , Camundongos , Anticorpos Antiproteína Citrulinada , Autoanticorpos , Dor , Tenossinovite/diagnóstico por imagem
19.
Brain Behav Immun ; 101: 214-230, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026421

RESUMO

Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.


Assuntos
Artrite Experimental , Neuralgia , Animais , Anticorpos , Colágeno , Gânglios Espinais , Humanos , Lisofosfolipídeos , Camundongos , Neuroglia , Células Receptoras Sensoriais
20.
Pain ; 163(10): 1999-2013, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086123

RESUMO

ABSTRACT: Rheumatic diseases are often associated to debilitating chronic pain, which remains difficult to treat and requires new therapeutic strategies. We had previously identified lysophosphatidylcholine (LPC) in the synovial fluids from few patients and shown its effect as a positive modulator of acid-sensing ion channel 3 (ASIC3) able to induce acute cutaneous pain in rodents. However, the possible involvement of LPC in chronic joint pain remained completely unknown. Here, we show, from 2 independent cohorts of patients with painful rheumatic diseases, that the synovial fluid levels of LPC are significantly elevated, especially the LPC16:0 species, compared with postmortem control subjects. Moreover, LPC16:0 levels correlated with pain outcomes in a cohort of osteoarthritis patients. However, LPC16:0 do not appear to be the hallmark of a particular joint disease because similar levels are found in the synovial fluids of a second cohort of patients with various rheumatic diseases. The mechanism of action was next explored by developing a pathology-derived rodent model. Intra-articular injections of LPC16:0 is a triggering factor of chronic joint pain in both male and female mice, ultimately leading to persistent pain and anxiety-like behaviors. All these effects are dependent on ASIC3 channels, which drive sufficient peripheral inputs to generate spinal sensitization processes. This study brings evidences from mouse and human supporting a role for LPC16:0 via ASIC3 channels in chronic pain arising from joints, with potential implications for pain management in osteoarthritis and possibly across other rheumatic diseases.


Assuntos
Canais Iônicos Sensíveis a Ácido , Dor Crônica , Osteoartrite , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Artralgia/etiologia , Feminino , Humanos , Lisofosfatidilcolinas/toxicidade , Masculino , Camundongos , Osteoartrite/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA