Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
2.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474159

RESUMO

PRPH2, one of the most frequently inherited retinal dystrophy (IRD)-causing genes, implies a high phenotypic variability. This study aims to analyze the PRPH2 mutational spectrum in one of the largest cohorts worldwide, and to describe novel pathogenic variants and genotype-phenotype correlations. A study of 220 patients from 103 families recruited from a database of 5000 families. A molecular diagnosis was performed using classical molecular approaches and next-generation sequencing. Common haplotypes were ascertained by analyzing single-nucleotide polymorphisms. We identified 56 variants, including 11 novel variants. Most of them were missense variants (64%) and were located in the D2-loop protein domain (77%). The most frequently occurring variants were p.Gly167Ser, p.Gly208Asp and p.Pro221_Cys222del. Haplotype analysis revealed a shared region in families carrying p.Leu41Pro or p.Pro221_Cys222del. Patients with retinitis pigmentosa presented an earlier disease onset. We describe the largest cohort of IRD families associated with PRPH2 from a single center. Most variants were located in the D2-loop domain, highlighting its importance in interacting with other proteins. Our work suggests a likely founder effect for the variants p.Leu41Pro and p.Pro221_Cys222del in our Spanish cohort. Phenotypes with a primary rod alteration presented more severe affectation. Finally, the high phenotypic variability in PRPH2 hinders the possibility of drawing genotype-phenotype correlations.


Assuntos
Distrofias Retinianas , Retinose Pigmentar , Humanos , Análise Mutacional de DNA , Mutação , Mutação de Sentido Incorreto , Fenótipo , Distrofias Retinianas/genética , Retinose Pigmentar/genética
3.
Genes (Basel) ; 14(9)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37761804

RESUMO

Snijders Blok-Campeau syndrome (SNIBCPS, OMIM# 618205) is an extremely infrequent disease with only approximately 60 cases reported so far. SNIBCPS belongs to the group of neurodevelopmental disorders (NDDs). Clinical features of patients with SNIBCPS include global developmental delay, intellectual disability, speech and language difficulties and behavioral disorders like autism spectrum disorder. In addition, patients with SNIBCPS exhibit typical dysmorphic features including macrocephaly, hypertelorism, sparse eyebrows, broad forehead, prominent nose and pointed chin. The severity of the neurological effects as well as the presence of other features is variable among subjects. SNIBCPS is caused likely by pathogenic and pathogenic variants in CHD3 (Chromodomain Helicase DNA Binding Protein 3), which seems to be involved in chromatin remodeling by deacetylating histones. Here, we report 20 additional patients with clinical features compatible with SNIBCPS from 17 unrelated families with confirmed likely pathogenic/pathogenic variants in CHD3. Patients were analyzed by whole exome sequencing and segregation studies were performed by Sanger sequencing. Patients in this study showed different pathogenic variants affecting several functional domains of the protein. Additionally, none of the variants described here were reported in control population databases, and most computational predictors suggest that they are deleterious. The most common clinical features of the whole cohort of patients are global developmental delay (98%) and speech disorder/delay (92%). Other frequent features (51-74%) include intellectual disability, hypotonia, hypertelorism, abnormality of vision, macrocephaly and prominent forehead, among others. This study expands the number of individuals with confirmed SNIBCPS due to pathogenic or likely pathogenic variants in CHD3. Furthermore, we add evidence of the importance of the application of massive parallel sequencing for NDD patients for whom the clinical diagnosis might be challenging and where deep phenotyping is extremely useful to accurately manage and follow up the patients.


Assuntos
Deficiências do Desenvolvimento , Hipertelorismo , Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Megalencefalia , Humanos , DNA Helicases/genética , Histonas , Deficiência Intelectual/genética , Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Deficiências do Desenvolvimento/genética
4.
Am J Ophthalmol ; 254: 87-103, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37327959

RESUMO

PURPOSE: To describe the genetic and clinical spectrum of GUCY2D-associated retinopathies and to accurately establish their prevalence in a large cohort of patients. DESIGN: Retrospective case series. METHODS: Institutional study of 47 patients from 27 unrelated families with retinal dystrophies carrying disease-causing GUCY2D variants from the Fundación Jiménez Díaz hospital dataset of 8000 patients. Patients underwent ophthalmological examination and molecular testing by Sanger or exome sequencing approaches. Statistical and principal component analyses were performed to determine genotype-phenotype correlations. RESULTS: Four clinically different associated phenotypes were identified: 66.7% of families with cone/cone-rod dystrophy, 22.2% with Leber congenital amaurosis, 7.4% with early-onset retinitis pigmentosa, and 3.7% with congenital night blindness. Twenty-three disease-causing GUCY2D variants were identified, including 6 novel variants. Biallelic variants accounted for 28% of patients, whereas most carried dominant alleles associated with cone/cone-rod dystrophy. The disease onset had statistically significant differences according to the functional variant effect. Patients carrying GUCY2D variants were projected into 3 subgroups by allelic combination, disease onset, and presence of nystagmus or night blindness. In contrast to patients with the most severe phenotype of Leber congenital amaurosis, 7 patients with biallelic GUCY2D had a later and milder rod form with night blindness in infancy as the first symptom. CONCLUSIONS: This study represents the largest GUCY2D cohort in which 4 distinctly different phenotypes were identified, including rare intermediate presentations of rod-dominated retinopathies. We established that GUCY2D is linked to about 1% of approximately 3000 molecularly characterized families of our cohort. All of these findings are critical for defining cohorts for inclusion in future clinical trials.


Assuntos
Distrofias de Cones e Bastonetes , Amaurose Congênita de Leber , Cegueira Noturna , Humanos , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Genótipo , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Mutação , Cegueira Noturna/diagnóstico , Cegueira Noturna/genética , Linhagem , Fenótipo , Estudos Retrospectivos
5.
Eur J Hum Genet ; 31(4): 461-468, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747006

RESUMO

Haploinsufficiency of TRIP12 causes a neurodevelopmental disorder characterized by intellectual disability associated with epilepsy, autism spectrum disorder and dysmorphic features, also named Clark-Baraitser syndrome. Only a limited number of cases have been reported to date. We aimed to further delineate the TRIP12-associated phenotype and objectify characteristic facial traits through GestaltMatcher image analysis based on deep-learning algorithms in order to establish a TRIP12 gestalt. 38 individuals between 3 and 66 years (F = 20, M = 18) - 1 previously published and 37 novel individuals - were recruited through an ERN ITHACA call for collaboration. 35 TRIP12 variants were identified, including frameshift (n = 15) and nonsense (n = 6) variants, as well as missense (n = 5) and splice (n = 3) variants, intragenic deletions (n = 4) and two multigene deletions disrupting TRIP12. Though variable in severity, global developmental delay was noted in all individuals, with language deficit most pronounced. About half showed autistic features and susceptibility to obesity seemed inherent to this disorder. A more severe expression was noted in individuals with a missense variant. Facial analysis showed a clear gestalt including deep-set eyes with narrow palpebral fissures and fullness of the upper eyelids, downturned corners of the mouth and large, often low-set ears with prominent earlobes. We report the largest cohort to date of individuals with TRIP12 variants, further delineating the associated phenotype and introducing a facial gestalt. These findings will improve future counseling and patient guidance.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Proteínas de Transporte/genética , Ubiquitina-Proteína Ligases/genética
6.
J Med Genet ; 60(7): 644-654, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36446582

RESUMO

BACKGROUND: KBG syndrome is a highly variable neurodevelopmental disorder and clinical diagnostic criteria have changed as new patients have been reported. Both loss-of-function sequence variants and large deletions (copy number variations, CNVs) involving ANKRD11 cause KBG syndrome, but no genotype-phenotype correlation has been reported. METHODS: 67 patients with KBG syndrome were assessed using a custom phenotypical questionnaire. Manifestations present in >50% of the patients and a 'phenotypical score' were used to perform a genotype-phenotype correlation in 340 patients from our cohort and the literature. RESULTS: Neurodevelopmental delay, macrodontia, triangular face, characteristic ears, nose and eyebrows were the most prevalentf (eatures. 82.8% of the patients had at least one of seven main comorbidities: hearing loss and/or otitis media, visual problems, cryptorchidism, cardiopathy, feeding difficulties and/or seizures. Associations found included a higher phenotypical score in patients with sequence variants compared with CNVs and a higher frequency of triangular face (71.1% vs 42.5% in CNVs). Short stature was more frequent in patients with exon 9 variants (62.5% inside vs 27.8% outside exon 9), and the prevalence of intellectual disability/attention deficit hyperactivity disorder/autism spectrum disorder was lower in patients with the c.1903_1907del variant (70.4% vs 89.4% other variants). Presence of macrodontia and comorbidities were associated with larger deletion sizes and hand anomalies with smaller deletions. CONCLUSION: We present a detailed phenotypical description of KBG syndrome in the largest series reported to date of 67 patients, provide evidence of a genotype-phenotype correlation between some KBG features and specific ANKRD11 variants in 340 patients, and propose updated clinical diagnostic criteria based on our findings.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Masculino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Fácies , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Proteínas Repressoras/genética , Deleção Cromossômica , Fenótipo , Fatores de Transcrição/genética
7.
NPJ Genom Med ; 7(1): 41, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835773

RESUMO

Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy characterized by extensive inter- and intra-familial variability, in which oligogenic interactions have been also reported. Our main goal is to elucidate the role of mutational load in the clinical variability of BBS. A cohort of 99 patients from 77 different families with biallelic pathogenic variants in a BBS-associated gene was retrospectively recruited. Human Phenotype Ontology terms were used in the annotation of clinical symptoms. The mutational load in 39 BBS-related genes was studied in index cases using different molecular and next-generation sequencing (NGS) approaches. Candidate allele combinations were analysed using the in silico tools ORVAL and DiGePred. After clinical annotation, 76 out of the 99 cases a priori fulfilled established criteria for diagnosis of BBS or BBS-like. BBS1 alleles, found in 42% of families, were the most represented in our cohort. An increased mutational load was excluded in 41% of the index cases (22/54). Oligogenic inheritance was suspected in 52% of the screened families (23/45), being 40 tested by means of NGS data and 5 only by traditional methods. Together, ORVAL and DiGePred platforms predicted an oligogenic effect in 44% of the triallelic families (10/23). Intrafamilial variable severity could be clinically confirmed in six of the families. Our findings show that the presence of more than two alleles in BBS-associated genes correlated in six families with a more severe phenotype and associated with specific findings, highlighting the role of the mutational load in the management of BBS cases.

8.
Invest Ophthalmol Vis Sci ; 63(2): 11, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35119454

RESUMO

Purpose: To assess the potential of next-generation sequencing (NGS) technologies to characterize cases diagnosed with autosomal recessive (ar) or sporadic (s) macular dystrophies (ar/sMD) and describe their mutational spectrum. Methods: A cohort of 1036 families was classified according to their suspected clinical diagnosis-Stargardt disease (STGD), cone and cone-rod dystrophy (CCRD) or other maculopathies (otherMD). Molecular studies included genotyping microarrays, Sanger sequencing, NGS, and sequencing of intronic regions of the ABCA4 gene. Clinical reclassification was done after the genetic study. Results: At the end of the study, 677 patients (65%) had a confirmed genetic diagnosis, representing 78%, 63%, and 38% of STGD, CCRD, and otherMD groups of patients, respectively. ABCA4 is the most mutated gene in all groups, and a second pathogenic variant was found in 76% of STGD patients with one previously identified mutated ABCA4 allele. Autosomal dominant or X-linked mutations were found in 5% of cases together with not-MD genes (CHM, EYS, RHO, RPGR, RLBP1, OPA1, and USH2A among others) leading to their reclassification. Novel variants in the very rare genes PLA2G5 and TTLL5 revealed additional phenotypic associations. Conclusions: This study provides for the first time a genetic landscape of 1036 ar/sMD families according to their suspected diagnosis. The analysis of >200 genes associated with retinal dystrophies and the entire locus of ABCA4 increase the rate of characterization, even regardless of available clinical and familiar data. The use of the suspected a priori diagnosis referred by the clinicians, especially in the past, could lead to clinical reclassifications to other inherited retinal dystrophies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Distrofias de Cones e Bastonetes/genética , DNA/genética , Mutação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Alelos , Distrofias de Cones e Bastonetes/epidemiologia , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Morbidade/tendências , Linhagem , Fenótipo , Estudos Retrospectivos , Segmento Externo da Célula Bastonete , Espanha/epidemiologia
9.
J Med Genet ; 59(5): 428-437, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33782094

RESUMO

BACKGROUND: The paired-domain transcription factor paired box gene 6 (PAX6) causes a wide spectrum of ocular developmental anomalies, including congenital aniridia, Peters anomaly and microphthalmia. Here, we aimed to functionally assess the involvement of seven potentially non-canonical splicing variants on missplicing of exon 6, which represents the main hotspot region for loss-of-function PAX6 variants. METHODS: By locus-specific analysis of PAX6 using Sanger and/or targeted next-generation sequencing, we screened a Spanish cohort of 106 patients with PAX6-related diseases. Functional splicing assays were performed by in vitro minigene approaches or directly in RNA from patient-derived lymphocytes cell line, when available. RESULTS: Five out seven variants, including three synonymous changes, one small exonic deletion and one non-canonical splice variant, showed anomalous splicing patterns yielding partial exon skipping and/or elongation. CONCLUSION: We describe new spliceogenic mechanisms for PAX6 variants mediated by creating or strengthening five different cryptic donor sites at exon 6. Our work revealed that the activation of cryptic PAX6 splicing sites seems to be a recurrent and underestimated cause of aniridia. Our findings pointed out the importance of functional assessment of apparently silent PAX6 variants to uncover hidden genetic alterations and to improve variant interpretation for genetic counselling in aniridia.


Assuntos
Aniridia , Anormalidades do Olho , Aniridia/genética , Anormalidades do Olho/genética , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação/genética , Fator de Transcrição PAX6/genética , Linhagem , Sítios de Splice de RNA/genética
10.
Exp Eye Res ; 212: 108761, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492281

RESUMO

INTRODUCTION: Biallelic pathogenic RPE65 variants are related to a spectrum of clinically overlapping inherited retinal dystrophies (IRD). Most affected individuals progress to severe disease, with 50% of patients becoming legally blind by 20 years of age. Deeper knowledge of the mutational spectrum and the phenotype-genotype correlation in RPE65-related IRD is needed. PATIENTS AND METHODS: Forty-five affected subjects from 27 unrelated families with a clinical diagnosis of RPE65-related IRD were included. Clinical evaluation consisted of self-reported ophthalmological history and objective ophthalmological examination. Patients' genotype was classified according to variant class (truncating or missense) or to variant location at different protein domains. The main phenotypic outcome measure was age at onset (AAO) of symptomatic disease and a Kaplan-Meier analysis of disease symptom event-free survival was performed. RESULTS: Twenty-nine different RPE65 variants were identified in our cohort, 7 of them novel. Patients carrying two missense alleles showed a later disease onset than those with 1 or 2 truncating variants (log-rank test p <0.05). While 60% of patients carrying a missense/missense genotype presented symptoms before or during the first year of life, almost all patients with at least 1 truncating allele (91%) had an AAO ≤1 year (p <0.05). CONCLUSION: Our findings suggest an association between the type of RPE65 variant carried and AAO. These findings provide useful data on RPE65-associated IRD phenotypes and may help improve clinical and therapeutic management of these patients.


Assuntos
DNA/genética , Estudos de Associação Genética/métodos , Mutação , Distrofias Retinianas/genética , cis-trans-Isomerases/genética , Adolescente , Alelos , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Genótipo , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/metabolismo , Adulto Jovem , cis-trans-Isomerases/metabolismo
12.
NPJ Genom Med ; 6(1): 25, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767182

RESUMO

Most consensus recommendations for the genetic diagnosis of neurodevelopmental disorders (NDDs) do not include the use of next generation sequencing (NGS) and are still based on chromosomal microarrays, such as comparative genomic hybridization array (aCGH). This study compares the diagnostic yield obtained by aCGH and clinical exome sequencing in NDD globally and its spectrum of disorders. To that end, 1412 patients clinically diagnosed with NDDs and studied with aCGH were classified into phenotype categories: global developmental delay/intellectual disability (GDD/ID); autism spectrum disorder (ASD); and other NDDs. These categories were further subclassified based on the most frequent accompanying signs and symptoms into isolated forms, forms with epilepsy; forms with micro/macrocephaly and syndromic forms. Two hundred and forty-five patients of the 1412 were subjected to clinical exome sequencing. Diagnostic yield of aCGH and clinical exome sequencing, expressed as the number of solved cases, was compared for each phenotype category and subcategory. Clinical exome sequencing was superior than aCGH for all cases except for isolated ASD, with no additional cases solved by NGS. Globally, clinical exome sequencing solved 20% of cases (versus 5.7% by aCGH) and the diagnostic yield was highest for all forms of GDD/ID and lowest for Other NDDs (7.1% versus 1.4% by aCGH) and ASD (6.1% versus 3% by aCGH). In the majority of cases, diagnostic yield was higher in the phenotype subcategories than in the mother category. These results suggest that NGS could be used as a first-tier test in the diagnostic algorithm of all NDDs followed by aCGH when necessary.

13.
Sci Rep ; 11(1): 1526, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452396

RESUMO

Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.


Assuntos
Distrofias Retinianas/epidemiologia , Distrofias Retinianas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Estudos de Coortes , Estudos Transversais , DNA/genética , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Miosina VIIa/genética , Linhagem , Periferinas/genética , Prevalência , Retinose Pigmentar/genética , Estudos Retrospectivos , Espanha/epidemiologia
14.
Am J Ophthalmol ; 219: 195-204, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32619608

RESUMO

PURPOSE: To define genotype-phenotype correlations in the largest cohort study worldwide of patients with biallelic ABCA4 variants, including 434 patients with Stargardt disease (STGD1) and 72 with cone-rod dystrophy (CRD). DESIGN: Cohort study. METHODS: We characterized 506 patients with ABCA4 variants using conventional genetic tools and next-generation sequencing technologies. Medical history and ophthalmologic data were obtained from 372 patients. Genotype-phenotype correlation studies were carried out for the following variables: variant type, age at symptom onset (AO), and clinical phenotype. RESULTS: A total of 228 different pathogenic variants were identified in 506 ABCA4 patients, 50 of which were novel. Genotype-phenotype correlations showed that most of the patients with biallelic truncating variants presented with CRD and that these cases had a significantly earlier AO than patients with STGD1. Three missense variants are associated with CRD for the first time (c.1804C>T; p.[Arg602Trp], c.3056C>T; p.[Thr1019Met], and c.6320G>C; p.[Arg2107Pro]). Analysis of the most prevalent ABCA4 variant in Spain, c.3386G>T; p.(Arg1129Leu), revealed that is correlated to STGD1, later AO, and foveal sparing. CONCLUSIONS: Our study, conducted in the largest ABCA4-associated disease cohort reported to date, updates the genotype-phenotype model established for ABCA4 variants and broadens the mutational spectrum of the gene. According to our observations, patients with ABCA4 presenting with 2 truncating variants may first present features of STGD1 but eventually develop rod dysfunction, and specific missense variants may be associated with a different phenotype, underscoring the importance of an accurate genetic diagnosis. Also, it is a prerequisite for enrollment in clinical trials, and to date, no other treatment has been approved for STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Distrofias de Cones e Bastonetes/genética , Mutação de Sentido Incorreto , Doença de Stargardt/genética , Adulto , Idade de Início , Alelos , Estudos de Coortes , Distrofias de Cones e Bastonetes/diagnóstico , Eletrorretinografia , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Espanha , Doença de Stargardt/diagnóstico , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Adulto Jovem
15.
Ophthalmology ; 126(8): 1181-1188, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30902645

RESUMO

PURPOSE: We aimed to unravel the molecular basis of sporadic retinitis pigmentosa (sRP) in the largest cohort reported to date. DESIGN: Case series. PARTICIPANTS: A cohort of 877 unrelated Spanish sporadic cases with a clinical diagnosis of retinitis pigmentosa (RP) and negative family history. METHODS: The cohort was studied by classic genotyping or targeted next-generation sequencing (NGS). Multiplex ligation-dependent probe amplification (MLPA) and array-based comparative genomic hybridization were performed to confirm copy number variations detected by NGS. Quantitative fluorescent polymerase chain reaction was assessed in sRP cases carrying de novo variants to confirm paternity. MAIN OUTCOME MEASURES: The study of the sRP cohort showed a high proportion of causal autosomal dominant (AD) and X-linked (XL) variants, most of them being de novo. RESULTS: Causative variants were identified in 38% of the patients studied, segregating recessively in 84.5% of the solved cases. Biallelic variants detected in only 6 different autosomal recessive genes explained 50% of the cases characterized. Causal AD and XL variants were found in 7.6% and 7.9% of cases, respectively. Remarkably, 20 de novo variants were confirmed after trio analysis, explaining 6% of the cases. In addition, 17% of the solved sRP cases were reclassified to a different retinopathy phenotype. CONCLUSIONS: This study highlights the clinical utility of NGS testing for sRP cases, expands the mutational spectrum, and provides accurate prevalence of mutated genes. Our findings evidence the underestimated role of de novo variants in the etiology of RP, emphasizing the importance of segregation analysis as well as comprehensive screening of genes carrying XL and AD variants in sporadic cases. Such in-depth study is essential for accurate family counseling and future enrollment in gene therapy-based treatments.


Assuntos
Retinose Pigmentar/genética , Adulto , Estudos de Coortes , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Análise Mutacional de DNA/métodos , Feminino , Genes Recessivos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo
16.
Hum Genet ; 138(8-9): 1051-1069, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29974297

RESUMO

Two distinct syndromes arise from pathogenic variants in the X-linked gene BCOR (BCL-6 corepressor): oculofaciocardiodental (OFCD) syndrome, which affects females, and a severe microphthalmia ('Lenz'-type) syndrome affecting males. OFCD is an X-linked dominant syndrome caused by a variety of BCOR null mutations. As it manifests only in females, it is presumed to be lethal in males. The severe male X-linked recessive microphthalmia syndrome ('Lenz') usually includes developmental delay in addition to the eye findings and is caused by hypomorphic BCOR variants, mainly by a specific missense variant c.254C > T, p.(Pro85Leu). Here, we detail 16 new cases (11 females with 4 additional, genetically confirmed, affected female relatives; 5 male cases each with unaffected carrier mothers). We describe new variants and broaden the phenotypic description for OFCD to include neuropathy, muscle hypotonia, pituitary underdevelopment, brain atrophy, lipoma and the first description of childhood lymphoma in an OFCD case. Our male X-linked recessive cases show significant new phenotypes: developmental delay (without eye anomalies) in two affected half-brothers with a novel BCOR variant, and one male with high myopia, megalophthalmos, posterior embryotoxon, developmental delay, and heart and bony anomalies with a previously undescribed BCOR splice site variant. Our female OFCD cases and their affected female relatives showed variable features, but consistently had early onset cataracts. We show that a mosaic carrier mother manifested early cataract and dental anomalies. All female carriers of the male X-linked recessive cases for whom genetic confirmation was available showed skewed X-inactivation and were unaffected. In view of the extended phenotype, we suggest a new term of X-linked BCOR-related syndrome.


Assuntos
Anormalidades Múltiplas/genética , Catarata/congênito , Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X/genética , Defeitos dos Septos Cardíacos/genética , Microftalmia/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Catarata/genética , Pré-Escolar , Anormalidades do Olho/genética , Feminino , Variação Genética/genética , Heterozigoto , Humanos , Lactente , Masculino , Fenótipo , Síndrome , Inativação do Cromossomo X/genética , Adulto Jovem
18.
Front Genet ; 9: 479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386378

RESUMO

Mutations in PAX6 are involved in several developmental eye disorders. These disorders have considerable phenotypic variability, ranging from panocular forms of congenital aniridia and microphthalmia to isolated anomalies of the anterior or posterior segment. Here, we describe 3 families with variable inter-generational ocular expression of aniridia, iris coloboma, or microphthalmia, and an unusual transmission of PAX6 mutations from an unaffected or mildly affected parent; all of which raised suspicion of gonosomal mosaicism. We first identified two previously known nonsense mutations and one novel likely pathogenic missense variant in PAX6 in probands by means of targeted NGS. The subsequent segregation analysis by Sanger sequencing evidenced the presence of highly probable mosaic events in paternal blood samples. Mosaicism was further confirmed by droplet digital PCR analysis in several somatic tissues of mosaic fathers. Quantification of the mutant allele fraction in parental samples showed a marked deviation from 50%, with a range between 12 and 29% depending on cell type. Gonosomal mosaicsm was definitively confirmed in one of the families thanks to the availability of a sperm sample from the mosaic father. Thus, the recurrence risk in this family was estimated to be about one-third. This is the first report confirming parental PAX6 mosaicism as a cause of disease recurrence in aniridia and other related phenotypes. In addition, we demonstrated that post-zygotic mosaicism is a frequent and underestimated pathogenic mechanism in aniridia, explaining intra-familial phenotypic variability in many cases. Our findings may have substantial implications for genetic counseling in congenital aniridia. Thus, we also highlight the importance of comprehensive genetic screening of parents for new sporadic cases with aniridia or related developmental eye disease to more accurately assess recurrence risk. In conclusion, somatic and/or gonosomal mosaicism should be taken into consideration as a genetic factor to explain not only families with unaffected parents despite multiple affected children but also variable expressivity, apparent de novo cases, and even uncharacterized cases of aniridia and related developmental eye disorders, apparently lacking PAX6 mutations.

19.
Sci Rep ; 8(1): 5285, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588463

RESUMO

Inherited syndromic retinopathies are a highly heterogeneous group of diseases that involve retinal anomalies and systemic manifestations. They include retinal ciliopathies, other well-defined clinical syndromes presenting with retinal alterations and cases of non-specific multisystemic diseases. The heterogeneity of these conditions makes molecular and clinical characterization of patients challenging in daily clinical practice. We explored the capacity of targeted resequencing and copy-number variation analysis to improve diagnosis of a heterogeneous cohort of 47 patients mainly comprising atypical cases that did not clearly fit a specific clinical diagnosis. Thirty-three likely pathogenic variants were identified in 18 genes (ABCC6, ALMS1, BBS1, BBS2, BBS12, CEP41, CEP290, IFT172, IFT27, MKKS, MYO7A, OTX2, PDZD7, PEX1, RPGRIP1, USH2A, VPS13B, and WDPCP). Molecular findings and additional clinical reassessments made it possible to accurately characterize 14 probands (30% of the total). Notably, clinical refinement of complex phenotypes was achieved in 4 cases, including 2 de novo OTX2-related syndromes, a novel phenotypic association for the ciliary CEP41 gene, and the co-existence of biallelic USH2A variants and a Koolen-de-Vries syndrome-related 17q21.31 microdeletion. We demonstrate that combining next-generation sequencing and CNV analysis is a comprehensive and useful approach to unravel the extensive phenotypic and genotypic complexity of inherited syndromic retinopathies.


Assuntos
Ciliopatias/genética , Variações do Número de Cópias de DNA , Doenças Retinianas/genética , Estudos de Coortes , Feminino , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Doenças Retinianas/congênito
20.
J Med Genet ; 54(10): 698-704, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28794130

RESUMO

BACKGROUND: Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy, with a worldwide prevalence of 1 in 4000 persons. While in most cases of RP, the disease is limited to the eye (non-syndromic), over 40 forms of syndromic RP have been described. OBJECTIVES: To identify the genetic basis for syndromic RP in three unrelated families from Israel and Spain. METHODS: Whole exome sequencing was conducted in one Israeli and two Spanish families segregating autosomal recessive RP with intellectual disability. Complete ophthalmic examination included best-corrected visual acuity, funduscopy, optical coherence tomography, fluorescein angiography, flash visual evoked potentials, and electroretinography. Reverse transcription (RT)-PCR and immunostaining were used to examine the spatial and temporal expression pattern of SCAPER. RESULTS: In all patients, biallelic SCAPER mutations were observed. Clinically, patients with SCAPER mutations show signs of typical RP. In addition, they have mild to moderate intellectual disability and attention-deficit/hyperactivity disorder. SCAPER was found to be ubiquitously expressed in a wide range of human tissues, including retina and brain. Furthermore, RT-PCR analysis revealed that in both mouse eye and brain, Scaper is expressed as early as embryonic day 14. In the mouse retina, SCAPER is located in multiple layers, including the retinal pigment epithelium, photoreceptor outer and inner segments, the inner plexiform layer and the ganglion cell layer. CONCLUSIONS: Deleterious SCAPER mutations were identified in four patients from three unrelated families of different ethnic backgrounds, thereby confirming the involvement of this gene in the aetiology of autosomal recessive syndromic RP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA