Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(11): 7979-7997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515727

RESUMO

Nutrient management in resource conservation practices influence the structural and functional microbial diversities and thereby affect biological processes and biochemical properties in soil. We studied the long-term effects of resource conservation technologies on functional microbial diversity and their interactions with soil biochemical properties and enzymatic activities in tropical rice-green gram cropping system. The experiment includes seven treatments viz., conventional practice (CC), brown manuring (BM), green manuring (GM), wet direct drum sowing, zero tillage, green manuring-customized leaf colour chart based-N application (GM-CLCC-N) and biochar (BC) application. The result of the present study revealed that microbial biomass nitrogen (N), carbon (C) and phosphorus (P) in GM practice were increased by 23.3, 37.7 and 35.1%, respectively than CC. GM, BM and GM-CLCC-N treatments provide higher yields than conventional practice. The average well color development value, Shannon index and McIntosh index were significantly higher by 26.6%, 86.9% and 29.2% in GM as compared to control treatment. So, from this study we can conclude that resource conservation practices like GM, GM-CLCC N and BM in combination with chemical fertilizers provide easily decomposable carbon source to support the microbial growth. Moreover, dominance of microbial activity in biomass amended treatments (GM, GM-CLCC N and BM) indicated that these treatments could supply good amount of labile C sources on real time basis for microbial growth that may protect the stable C fraction in soil, hence could support higher yield and soil organic carbon build-up in long run under rice-green gram soil.


Assuntos
Oryza , Solo , Solo/química , Carbono/análise , Biomarcadores Ambientais , Indicadores de Qualidade em Assistência à Saúde , Agricultura/métodos , Fertilizantes , Nitrogênio/análise
2.
Sci Total Environ ; 665: 890-912, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30790762

RESUMO

This review covers the current and emerging analytical methods used in laboratory, field, landscape and regional contexts for measuring soil organic carbon (SOC) sequestration in agricultural soil. Soil depth plays an important role in estimating SOC sequestration. Selecting appropriate sampling design, depth of soil, use of proper analytical methods and base line selection are prerequisites for estimating accurately the soil carbon stocks. Traditional methods of wet digestion and dry combustion (DC) are extensively used for routine laboratory analysis; the latter is considered to be the "gold standard" and superior to the former for routine laboratory analysis. Recent spectroscopic techniques can measure SOC stocks in laboratory and in-situ even up to a deeper depth. Aerial spectroscopy using multispectral and/or hyperspectral sensors located on aircraft, unmanned aerial vehicles (UAVs) or satellite platforms can measure surface soil organic carbon. Although these techniques' current precision is low, the next generation hyperspectral sensor with improved signal noise ratio will further improve the accuracy of prediction. At the ecosystem level, carbon balance can be estimated directly using the eddy-covariance approach and indirectly by employing agricultural life cycle analysis (LCA). These methods have tremendous potential for estimating SOC. Irrespective of old or new approaches, depending on the resources and research needed, they occupy a unique place in soil carbon and climate research. This paper highlights the overview, potential limitations of various scale-dependent techniques for measuring SOC sequestration in agricultural soil.

3.
Int J Biometeorol ; 63(3): 337-349, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30680629

RESUMO

Photosynthetically active radiation (PAR) is one of the most important environmental factors that determine the productivity and grain quality of the crops. Continuous rainy days or cloudy weather throughout crop growth especially at critical stages often resulted in great loss of grain quality and yield in rice. Low light stress has rigorously constrained the rice production in various rice-growing regions, especially in Southeast Asia. Method and time of planting are the major management factors contributing to the higher yield potential of rice by influencing light harvesting and use efficiency. Present study was executed consecutively for 5 years (kharif seasons of 2012-2016) to determine whether planting time improves the radiation absorption and use efficiency in different duration rice cultivars. We evaluated the difference in plant growth and development leading to yield formation under different planting time which related to radiation incidence and interception. The results of the study revealed that PAR interception depends on morphological characters of cultivars and also with agronomic management such as transplanting time and method. Long duration cultivar intercepted more PAR but interception decreased due to late planting (3rd week of July), whereas short duration cultivars (Naveen) when planted earlier (1st week of June) could not effectively utilize intercepted PAR constraining the biomass accumulation and yield formation. Effect of planting density and crop architecture on PAR absorption was apparent among establishment methods as light interception at crop canopy was highest in the system of rice intensification and lowest in that of wet direct seeding. In general, Pooja as a long duration cultivar intercepted more PAR per day but when compared on same date of planting, the comparative absorption of radiation was 30.6% higher in Naveen. The lower yields in the wet season are attributed mostly to reduction in grain number per panicle or per unit land area, which is a consequence of high spikelet sterility. Grain yield of rice planted in July third week was reduced by 3.8, 12.3, and 6.9% over June first and third week and July first week, respectively, mainly due to spikelet sterility (26%) and lower grains per panicle (18%). Our results indicated that agronomic management like optimum time of sowing, cultivar duration, and establishment methods should be followed for yield improvement in tropical lowlands where light intensity is limiting due to prevailing weather situations.


Assuntos
Agricultura/métodos , Oryza/crescimento & desenvolvimento , Luz Solar , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Temperatura
4.
Sci Total Environ ; 651(Pt 1): 84-92, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223222

RESUMO

Methane (CH4) is predominantly produced in lowland rice soil, but its emission from soil to atmosphere primarily depends on passage/conduit or capillary pore spaces present in rice plants. The gas transport mechanism through aerenchyma pore spaces of rice cultivars was studied to explore the plant mediated CH4 emission. Seven rice cultivars, based on the life cycle duration (LCD), were tested in tropical eastern India. Three LCD groups were, (a) Kalinga 1 and CR Dhan 204 (LCD: 110-120 days); (b) Lalat, Pooja and CR 1014 (LCD: 130-150 days); and (c) Durga and Varshadhan (LCD: 160-170 days). Rate of CH4emission, root exudates, root oxidase activities and shoot aerenchyma pore spaces were analyzed to study the mechanism of plant mediated emission from rice. Aerenchyma pore space was quantified in the hypothesis that it regulates the CH4 transportation from soil to atmosphere. The ratio of pore space area to total space was lowest in Kalinga 1 cultivar (0.29) and highest was in Varshadhan (0.43). Significant variations in the methane emission were observed among the cultivars with an average emission rate ranged from 0.86 mg m-2 h-1 to 4.96 mg m-2 h-1. The CH4 emission rates were lowest in short duration cultivars followed by medium and long duration ones. The greenhouse gas intensity considering average CH4 emission rate per unit grain yield was also lowest (0.35) in Kalinga 1 and relatively less in short and medium duration cultivars. Root exudation was higher at panicle initiation (PI) than maximum tillering (MT) stage. Lowest exudation was noticed in (197.2 mg C plant-1 day-1) Kalinga 1 and highest in Varsadhan (231.7 mg C plant-1 day-1). So we can say, the rate of CH4 emission was controlled by aerenchyma orientation, root exudation and biomass production rate which are the key specific traits of a cultivar. Identified traits were closely associated with duration and adaptability to cultivars grown in specific ecology. Therefore, there is possibility to breed rice cultivars depending on ecology, duration and having less CH4 emission potential, which could be effectively used in greenhouse gas mitigation strategies.


Assuntos
Poluentes Atmosféricos/metabolismo , Metano/metabolismo , Oryza/metabolismo , Índia , Oryza/anatomia & histologia , Oryza/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Clima Tropical
5.
Ecotoxicol Environ Saf ; 114: 257-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24836933

RESUMO

Fly ash (FA), a byproduct of coal combustion in thermal power plants, has been considered as a problematic solid waste and its safe disposal is a cause of concern. Several studies proposed that FA can be used as a soil additive; however its effect on microbial response, soil enzymatic activities and heavy metal accumulation in soil and grain of rice (cv. Naveen) to fly ash (FA) application was studied in a pot experiment during dry season 2011 in an Inceptisol. Fly ash was applied at a rate of zero per cent (FS), five per cent (FA5), ten per cent (FA10), twenty per cent (FA20), 40 per cent (FA40) and 100 per cent (FA100) on soil volume basis with nitrogen (N), phosphorus (P) and potassium (K) (40:20:20mg N:P:Kkg(-1) soil) with six replications. Heavy metals contents in soil and plant parts were analysed after harvest of crop. On the other hand, microbial population and soil enzymatic activities were analysed at panicle initiation stage (PI, 65 days after transplanting) of rice. There was no significant change in the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), cadmium (Cd) and chromium (Cr) with application of fly ash up to FA10. However, at FA100 there was significant increase of all metals concentration in soil than other treatments. Microorganisms differed in their response to the rate of FA application. Population of both fungi and actinomycetes decreased with the application of fly ash, while aerobic heterotrophic bacterial population did not change significantly up to FA40. On the other hand, total microbial activity measured in terms of Fluorescein diacetate (FDA) assay, and denitrifiers showed an increased trend up to FA40. However, activities of both alkaline and acid phosphatase were decreased with the application of FA. Application of FA at lower levels (ten to twenty per cent on soil volume basis) in soil enhanced micronutrients content, microbial activities and crop yield.


Assuntos
Cinza de Carvão/farmacologia , Metais Pesados/análise , Oryza/química , Microbiologia do Solo , Solo/química , Actinobacteria/isolamento & purificação , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Nitrogênio/metabolismo , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA