Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
medRxiv ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38699375

RESUMO

Background: Understanding antibody responses to SARS-CoV-2 vaccination is crucial for refining COVID-19 immunization strategies. Generation of mucosal immune responses, including mucosal IgA, could be of potential benefit to vaccine efficacy, yet limited evidence exists regarding the production of mucosal antibodies following the administration of current mRNA vaccines to young children. Methods: We measured the levels of antibodies against SARS-CoV-2 from a cohort of children under 5 years of age undergoing SARS-CoV-2 mRNA vaccination (serially collected, matched serum and saliva samples, N=116) or on convenience samples of children under 5 years of age presenting to a pediatric emergency department (nasal swabs, N=103). Further, we assessed salivary and nasal samples for the ability to induce SARS-CoV-2 spike-mediated neutrophil extracellular traps (NET) formation. Results: Longitudinal analysis of post-vaccine responses in saliva revealed the induction of SARS-CoV-2 specific IgG but not IgA. Similarly, SARS-CoV-2 specific IgA was only observed in nasal samples obtained from previously infected children with or without vaccination, but not in vaccinated children without a history of infection. In addition, oronasopharyngeal samples obtained from children with prior infection were able to trigger enhanced spike-mediated NET formation, and IgA played a key role in driving this process. Conclusions: Despite the induction of specific IgG in the oronasal mucosa, current intramuscular vaccines have limited ability to generate mucosal IgA in young children. These results confirm the independence of mucosal IgA responses from systemic humoral responses following mRNA vaccination and suggest potential future vaccination strategies for enhancing mucosal protection in this young age group.

3.
medRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37961239

RESUMO

BACKGROUND: Persistent symptoms among some persons who develop COVID-19 has led to the hypothesis that SARS-CoV-2 may, in some form or location, persist for long periods following acute infection. Several studies have shown data in this regard but are limited by non-representative and small study populations, short duration since acute infection, and lack of a true-negative comparator group to assess assay specificity. METHODS: We evaluated adults with RNA-confirmed COVID-19 at multiple time points following acute infection (pandemic-era participants) and adults with specimens collected prior to 2020 (pre-pandemic era). Using once-thawed plasma, we employed the Simoa® (Quanterix) single molecule array detection platform to measure SARS-CoV-2 spike, S1, and nucleocapsid antigens. RESULTS: Compared to 250 pre-pandemic participants who had 2% assay positivity, detection of any SARS-CoV-2 antigen was significantly more frequent among 171 pandemic-era participants at three different time periods in the post-acute phase of infection. The absolute difference in SARS-CoV-2 plasma antigen prevalence was +11% (95% CI: +5.0% to +16%) at 3.0-6.0 months post-onset of COVID-19; +8.7% (95% CI: +3.1% to +14%) at 6.1 to 10.0 months; and +5.4% (95% CI: +0.42% to +10%) at 10.1-14.1 months. Hospitalization for acute COVID-19 and, among the non-hospitalized, worse self-reported health during acute COVID-19 were associated with greater post-acute phase antigen detection. CONCLUSIONS: Compared to uninfected persons, there is an excess prevalence of SARS-CoV-2 antigenemia in SARS-CoV-2-infected individuals up to 14 months after acute COVID-19. These findings motivate an urgent research agenda regarding the short-term and long-term clinical manifestations of this viral persistence.

4.
ACS Synth Biol ; 5(9): 929-35, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27186988

RESUMO

Cell-free environments are becoming viable alternatives for implementing biological networks in synthetic biology. The reconstituted cell-free expression system (PURE) allows characterization of genetic networks under defined conditions but its applicability to native bacterial promoters and endogenous genetic networks is limited due to the poor transcription rate of Escherichia coli RNA polymerase in this minimal system. We found that addition of transcription elongation factors GreA and GreB to the PURE system increased transcription rates of E. coli RNA polymerase from sigma factor 70 promoters up to 6-fold and enhanced the performance of a genetic network. Furthermore, we reconstituted activation of natural E. coli promoters controlling flagella biosynthesis by the transcriptional activator FlhDC and sigma factor 28. Addition of GreA/GreB to the PURE system allows efficient expression from natural and synthetic E. coli promoters and characterization of their regulation in minimal and defined reaction conditions, making the PURE system more broadly applicable to study genetic networks and bottom-up synthetic biology.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biossíntese de Proteínas/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Regulação Bacteriana da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Regiões Promotoras Genéticas/genética
5.
J Mol Biol ; 424(1-2): 54-67, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22999957

RESUMO

The right angle (RA) motif, previously identified in the ribosome and used as a structural module for nano-construction, is a recurrent structural motif of 13 nucleotides that establishes a 90° bend between two adjacent helices. Comparative sequence analysis was used to explore the sequence space of the RA motif within ribosomal RNAs in order to define its canonical sequence space signature. We investigated the sequence constraints associated with the RA signature using several artificial self-assembly systems. Thermodynamic and topological investigations of sequence variants associated with the RA motif in both minimal and expanded structural contexts reveal that the presence of a helix at the 3' end of the RA motif increases the thermodynamic stability and rigidity of the resulting three-helix junction domain. A search for the RA in naturally occurring RNAs as well as its experimental characterization led to the identification of the RA in groups IC1 and ID intron ribozymes, where it is suggested to play an integral role in stabilizing peripheral structural domains. The present study exemplifies the need of empirical analysis of RNA structural motifs for facilitating the rational design and structure prediction of RNAs.


Assuntos
Íntrons , Conformação de Ácido Nucleico , RNA Ribossômico/química , Sequência de Bases , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA