Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
2.
Elife ; 122023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975211

RESUMO

Ciliopathies manifest from sensory abnormalities to syndromic disorders with multi-organ pathologies, with retinal degeneration a highly penetrant phenotype. Photoreceptor cell death is a major cause of incurable blindness in retinal ciliopathies. To identify drug candidates to maintain photoreceptor survival, we performed an unbiased, high-throughput screening of over 6000 bioactive small molecules using retinal organoids differentiated from induced pluripotent stem cells (iPSC) of rd16 mouse, which is a model of Leber congenital amaurosis (LCA) type 10 caused by mutations in the cilia-centrosomal gene CEP290. We identified five non-toxic positive hits, including the lead molecule reserpine, which maintained photoreceptor development and survival in rd16 organoids. Reserpine also improved photoreceptors in retinal organoids derived from induced pluripotent stem cells of LCA10 patients and in rd16 mouse retina in vivo. Reserpine-treated patient organoids revealed modulation of signaling pathways related to cell survival/death, metabolism, and proteostasis. Further investigation uncovered dysregulation of autophagy associated with compromised primary cilium biogenesis in patient organoids and rd16 mouse retina. Reserpine partially restored the balance between autophagy and the ubiquitin-proteasome system at least in part by increasing the cargo adaptor p62, resulting in improved primary cilium assembly. Our study identifies effective drug candidates in preclinical studies of CEP290 retinal ciliopathies through cross-species drug discovery using iPSC-derived organoids, highlights the impact of proteostasis in the pathogenesis of ciliopathies, and provides new insights for treatments of retinal neurodegeneration.


Leber congenital amaurosis (LCA) is an inherited disease that affects the eyes and causes sight loss in early childhood, which generally gets worse over time. Individuals with this condition have genetic mutations that result in the death of light-sensitive cells, known as photoreceptors, in a region called the retina at the back of the eye. Patients carrying a genetic change in the gene CEP290 account for 20-25% of all LCA. At present, treatment options are only available for a limited number of patients with LCA. One option is to use small molecules as drugs that may target or bypass the faulty processes within the eye to help the photoreceptors survive in many different forms of LCA and other retinal diseases. However, over 90% of new drug candidates fail the first phase of clinical trials for human diseases. This in part due to the candidates having been developed using cell cultures or animal models that do not faithfully reflect how the human body works. Recent advances in cell and developmental biology are now enabling researchers to use stem cells derived from humans to grow retina tissues in a dish in the laboratory. These tissues, known as retinal organoids, behave in a more similar way to retinas in human eyes than those of traditional animal models. However, the methods for making and maintaining human retinal organoids are time-consuming and labor-intensive, which has so far limited their use in the search for new therapies. To address this challenge, Chen et al. developed a large-scale approach to grow retinal organoids from rd16 mutant mice stem cells (which are a good model for LCA caused by mutations to CEP290) and used the photoreceptors from these organoids to screen over 6,000 existing drugs for their ability to promote the survival of photoreceptors. The experiments found that the drug reserpine, which was previously approved to treat high blood pressure, also helped photoreceptors to survive in the diseased organoids. Reserpine also had a similar effect in retinal organoids derived from human patients with LCA and in the rd16 mice themselves. Further experiments suggest that reserpine may help patients with LCA by partially restoring a process by which the body destroys and recycles old and damaged proteins in the cells. The next steps following on from this work will be to perform further tests to demonstrate that this use of reserpine is safe to enter clinical trials as a treatment for LCA and other similar eye diseases.


Assuntos
Ciliopatias , Reserpina , Camundongos , Animais , Reserpina/farmacologia , Reserpina/metabolismo , Proteostase , Antígenos de Neoplasias/genética , Proteínas do Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo
3.
Exp Cell Res ; 412(1): 113007, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990619

RESUMO

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare, lysosomal disorder caused by mutations in a gene encoding iduronate-2-sulfatase (IDS). IDS deficiency results in an accumulation of glycosaminoglycans (GAGs) and secondary accumulations of other lipids in lysosomes. Symptoms of MPS II include a variety of soft and hard tissue problems, developmental delay, and deterioration of multiple organs. Enzyme replacement therapy is an approved treatment for MPS II, but fails to improve neuronal symptoms. Cell-based neuronal models of MPS II disease are needed for compound screening and drug development for the treatment of the neuronal symptoms in MPS II. In this study, three induced pluripotent stem cell (iPSC) lines were generated from three MPS II patient-derived dermal fibroblast cell lines that were differentiated into neural stem cells and neurons. The disease phenotypes were measured using immunofluorescence staining and Nile red dye staining. In addition, the therapeutic effects of recombinant human IDS enzyme, delta-tocopherol (DT), and hydroxypropyl-beta-cyclodextrin (HPBCD) were determined in the MPS II disease cells. Finally, the neural stem cells from two of the MPS II iPSC lines exhibited typical disease features including a deficiency of IDS activity, abnormal glycosaminoglycan storage, and secondary lipid accumulation. Enzyme replacement therapy partially rescued the disease phenotypes in these cells. DT showed a significant effect in reducing the secondary accumulation of lipids in the MPS II neural stem cells. In contrast, HPBCD displayed limited or no effect in these cells. Our data indicate that these MPS II cells can be used as a cell-based disease model to study disease pathogenesis, evaluate drug efficacy, and screen compounds for drug development.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Linhagem Celular , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Humanos , Iduronato Sulfatase/uso terapêutico , Células-Tronco Pluripotentes Induzidas/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos Neurológicos , Mucopolissacaridose II/patologia , Células-Tronco Neurais/patologia , Fenótipo , Proteínas Recombinantes/uso terapêutico , Tocoferóis/uso terapêutico
4.
Exp Cell Res ; 407(1): 112785, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411609

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is a lysosomal disease caused by mutations in the NAGLU gene encoding α-N-acetylglucosaminidase (NAGLU) which degrades heparan sulfate in lysosomes. Deficiency in NAGLU results in lysosomal accumulation of glycosaminoglycans (GAGs) and neurological symptoms. Currently, there is no effective treatment or cure for this disease. In this study, induced pluripotent stem cell lines were established from two MPS IIIB patient fibroblast lines and differentiated into neural stem cells and neurons. MPS IIIB neural stem cells exhibited NAGLU deficiency accompanied with GAG accumulation, as well as lysosomal enlargement and secondary lipid accumulation. Treatments with recombinant NAGLU, δ-tocopherol, and 2-hydroxypropyl-b-cyclodextrin significantly reduced the disease phenotypes in these cells. These results indicate the MPS IIIB neural stem cells and neurons have the disease relevant phenotype and can be used as a cell-based disease model system for evaluation of drug efficacy and compound screening for drug development.


Assuntos
Acetilglucosaminidase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucopolissacaridose III/metabolismo , Células-Tronco Neurais/metabolismo , Acetilglucosaminidase/genética , Diferenciação Celular/fisiologia , Heparitina Sulfato/metabolismo , Humanos , Lisossomos/metabolismo , Mucopolissacaridose III/genética , Neurônios/metabolismo , Fenótipo
5.
Cell Discov ; 6(1): 80, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33298900

RESUMO

The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-Cov and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, and facilitates the attachment of Spike-bearing viral particles to the cell surface to promote viral entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry and reveals drugs capable of targeting this important step in the viral life cycle.

6.
bioRxiv ; 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32699847

RESUMO

The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-CoV and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, facilitates the attachment of viral particles to the cell surface to promote cell entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry, and reveals drugs capable of targeting this important step in the viral life cycle.

7.
FASEB J ; 34(8): 10146-10167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32536017

RESUMO

Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.


Assuntos
Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Animais , Linhagem Celular , Eletrorretinografia/métodos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Células NIH 3T3 , Células Fotorreceptoras/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Retina/metabolismo , Retinose Pigmentar/genética , Rodopsina/genética
8.
Hum Mol Genet ; 27(20): 3612-3626, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30052969

RESUMO

Mucopolysaccharidosis type I (MPS I) is caused by deficiency of α-l-iduronidase (IDUA), a lysosomal enzyme involved in the breakdown and recycling of glycosaminoglycans (GAGs). Although enzyme replacement therapy is available, the efficacy of the treatment for neuropathic manifestations is limited. To facilitate drug discovery and model disease pathophysiology, we generated neural stem cells (NSCs) from MPS I patient-derived induced pluripotent stem cells (iPSCs). The NSCs exhibited characteristic disease phenotypes with deficiency of IDUA, accumulation of GAGs and enlargement of lysosomes, in agreement with the severity of clinical subgroups of MPS I. Transcriptome profiling of NSCs revealed 429 genes that demonstrated a more extensive change in expression in the most severe Hurler syndrome subgroup compared to the intermediate Hurler-Scheie or the least severe Scheie syndrome subgroups. Clustering and pathway analysis revealed high concordance of the severity of neurological defects with marked dysregulation of GAG biosynthesis, GAG degradation, lysosomal function and autophagy. Gene ontology (GO) analysis identified a dramatic upregulation of the autophagy pathway, especially in the Hurler syndrome subgroup. We conclude that GAG accumulation in the patient-derived cells disrupts lysosomal homeostasis, affecting multiple related cellular pathways in response to IDUA deficiency. These dysregulated processes likely lead to enhanced autophagy and progressively severe disease states. Our study provides potentially useful targets for clinical biomarker development, disease diagnosis and prognosis, and drug discovery.


Assuntos
Iduronidase/genética , Mucopolissacaridose I/enzimologia , Células-Tronco Neurais , Fenótipo , Linhagem Celular , Criança , Pré-Escolar , Perfilação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Humanos , Iduronidase/metabolismo , Células-Tronco Pluripotentes Induzidas , Lisossomos , Masculino , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Mutação
9.
Assay Drug Dev Technol ; 15(4): 154-166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28631941

RESUMO

Methyl-ß-cyclodextrin (MßCD) reduces lysosomal cholesterol accumulation in Niemann-Pick disease type C1 (NPC1) patient fibroblasts. However, the pharmacological activity of MßCD reported by different laboratories varies. To determine the potential causes of this variation, we analyzed the mass spectrum characteristics, pharmacological activity of three preparations of MßCDs, and the protein expression profiles of NPC1 patient fibroblasts after treatment with different sources of MßCDs. Our data revealed varied mass spectrum profiles and pharmacological activities on the reduction of lysosomal cholesterol accumulation in NPC1 fibroblasts for these three preparations of MßCDs obtained from different batches and different sources. Furthermore, a proteomic analysis showed the differences of these three MßCD preparations on amelioration of dysregulated protein expression levels in NPC1 cells. The results demonstrate the importance of prescreening of different cyclodextrin preparations before use as a therapeutic agent. A combination of mass spectrum analysis, measurement of pharmacological activity, and proteomic profiling provides an effective analytical procedure for characterization of cyclodextrins for therapeutic applications.


Assuntos
Colesterol/metabolismo , Lisossomos/efeitos dos fármacos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , beta-Ciclodextrinas/farmacologia , Células Cultivadas , Fibroblastos/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lisossomos/metabolismo , Espectrometria de Massas , Estrutura Molecular , Doença de Niemann-Pick Tipo C/patologia , beta-Ciclodextrinas/análise
10.
Invest Ophthalmol Vis Sci ; 57(5): ORSFl1-ORSFl11, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27116668

RESUMO

We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration.


Assuntos
Células-Tronco Pluripotentes , Retina/citologia , Degeneração Retiniana , Técnicas de Cultura de Tecidos/métodos , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes Reporter/fisiologia , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/terapia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/terapia , Neurônios Retinianos/citologia , Epitélio Pigmentado da Retina/metabolismo
11.
Sci Rep ; 6: 22273, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26956526

RESUMO

Chemotaxis and cell migration are fundamental, universal eukaryotic processes essential for biological functions such as embryogenesis, immunity, cell renewal, and wound healing, as well as for pathogenesis of many diseases including cancer metastasis and chronic inflammation. To identify novel chemotaxis inhibitors as probes for mechanistic studies and leads for development of new therapeutics, we developed a unique, unbiased phenotypic chemotaxis-dependent Dictyostelium aggregation assay for high-throughput screening using rapid, laser-scanning cytometry. Under defined conditions, individual Dictyostelium secrete chemoattractants, migrate, and aggregate. Chemotaxis is quantified by laser-scanning cytometry with a GFP marker expressed only in cells after chemotaxis/multi-cell aggregation. We applied the assay to screen 1,280 known compounds in a 1536-well plate format and identified two chemotaxis inhibitors. The chemotaxis inhibitory activities of both compounds were confirmed in both Dictyostelium and in human neutrophils in a directed EZ-TAXIscan chemotaxis assay. The compounds were also shown to inhibit migration of two human cancer cell lines in monolayer scratch assays. This test screen demonstrated that the miniaturized assay is extremely suited for high-throughput screening of very large libraries of small molecules to identify novel classes of chemotaxis/migratory inhibitors for drug development and research tools for targeting chemotactic pathways universal to humans and other systems.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Dictyostelium/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Dictyostelium/fisiologia
12.
Antiviral Res ; 124: 20-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26515788

RESUMO

Hepatitis C virus (HCV) poses a major health threat to the world. The recent development of direct-acting antivirals (DAAs) against HCV has markedly improved the response rate of HCV and reduced the side effects in comparison to the interferon-based therapy. Despite this therapeutic advance, there is still a need to develop new inhibitors that target different stages of the HCV life cycle because of various limitations of the current regimens. In this study, we performed a quantitative high throughput screening of the Molecular Libraries Small Molecule Repository (MLSMR) of ∼350,000 chemicals for novel HCV inhibitors using our previously developed cell-based HCV infection assay. Following confirmation and structural clustering analysis, we narrowed down to 158 compounds from the initial ∼3000 molecules that showed inhibitory activity for further structural and functional analyses. We were able to assign the majority of these compounds to specific stage(s) in the HCV life cycle. Three of them are direct inhibitors of NS3/4A protease. Most of the compounds appear to act on novel targets in HCV life cycle. Four compounds with novel structure and excellent drug-like properties, three targeting HCV entry and one targeting HCV assembly/secretion, were advanced for further development as lead hits. These compounds represent diverse chemotypes that are potential lead compounds for further optimization and may offer promising candidates for the development of novel therapeutics against HCV infection. In addition, they represent novel molecular probes to explore the complex interactions between HCV and the cells.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Antivirais/química , Linhagem Celular Tumoral , Hepacivirus/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos
13.
Stem Cells Transl Med ; 4(7): 800-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25999519

RESUMO

UNLABELLED: : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. SIGNIFICANCE: In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings.

14.
J Biomol Screen ; 19(8): 1164-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907126

RESUMO

Niemann-Pick disease type C (NPC) is a rare neurodegenerative disorder caused by recessive mutations in the NPC1 or NPC2 gene that result in lysosomal accumulation of unesterified cholesterol in patient cells. Patient fibroblasts have been used for evaluation of compound efficacy, although neuronal degeneration is the hallmark of NPC disease. Here, we report the application of human NPC1 neural stem cells as a cell-based disease model to evaluate nine compounds that have been reported to be efficacious in the NPC1 fibroblasts and mouse models. These cells are differentiated from NPC1 induced pluripotent stem cells and exhibit a phenotype of lysosomal cholesterol accumulation. Treatment of these cells with hydroxypropyl-ß-cyclodextrin, methyl-ß-cyclodextrin, and δ-tocopherol significantly ameliorated the lysosomal cholesterol accumulation. Combined treatment with cyclodextrin and δ-tocopherol shows an additive or synergistic effect that otherwise requires 10-fold higher concentration of cyclodextrin alone. In addition, we found that hydroxypropyl-ß-cyclodextrin is much more potent and efficacious in the NPC1 neural stem cells compared to the NPC1 fibroblasts. Miglustat, suberoylanilide hydroxamic acid, curcumin, lovastatin, pravastatin, and rapamycin did not, however, have significant effects in these cells. The results demonstrate that patient-derived NPC1 neural stem cells can be used as a model system for evaluation of drug efficacy and study of disease pathogenesis.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/patologia , Doença de Niemann-Pick Tipo C/patologia , Diferenciação Celular , Células Cultivadas , Colesterol/metabolismo , Ciclodextrinas/farmacologia , Sinergismo Farmacológico , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Células-Tronco Neurais/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Tocoferóis/farmacologia
15.
Antimicrob Agents Chemother ; 58(2): 995-1004, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24277038

RESUMO

Therapy for hepatitis C virus (HCV) infection has advanced with the recent approval of direct-acting antivirals in combination with peginterferon and ribavirin. New antivirals with novel targets are still needed to further improve the treatment of hepatitis C. Previously reported screening methods for HCV inhibitors either are limited to a virus-specific function or apply a screening method at a single dose, which usually leads to high false-positive or -negative rates. We developed a quantitative high-throughput screening (qHTS) assay platform with a cell-based HCV infection system. This highly sensitive assay can be miniaturized to a 1,536-well format for screening of large chemical libraries. All candidates are screened over a 7-concentration dose range to give EC50s (compound concentrations at 50% efficacy) and dose-response curves. Using this assay format, we screened a library of pharmacologically active compounds (LOPAC). Based on the profile of dose-dependent curves of HCV inhibition and cytotoxicity, 22 compounds with adequate curves and EC50s of <10 µM were selected for validation. In two additional independent assays, 17 of them demonstrated specific inhibition of HCV infection. Ten potential candidates with efficacies of >70% and CC50s (compound concentrations at 50% cytotoxicity) of <30 µM from these validated hits were characterized for their target stages in the HCV replication cycle. In this screen, we identified both known and novel hits with diverse structural and functional features targeting various stages of the HCV replication cycle. The pilot screen demonstrates that this assay system is highly robust and effective in identifying novel HCV inhibitors and that it can be readily applied to large-scale screening of small-molecule libraries.


Assuntos
Antivirais/farmacologia , Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Genes Reporter , Hepacivirus , Hepatite C , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Concentração Inibidora 50 , Luciferases/genética , Luciferases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
16.
J Biomol Screen ; 19(1): 168-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23983233

RESUMO

The lysosome is a vital cellular organelle that primarily functions as a recycling center for breaking down unwanted macromolecules through a series of hydrolases. Functional deficiencies in lysosomal proteins due to genetic mutations have been found in more than 50 lysosomal storage diseases that exhibit characteristic lipid/macromolecule accumulation and enlarged lysosomes. Recently, the lysosome has emerged as a new therapeutic target for drug development for the treatment of lysosomal storage diseases. However, a suitable assay for compound screening against the diseased lysosomes is currently unavailable. We have developed a Lysotracker staining assay that measures the enlarged lysosomes in patient-derived cells using both fluorescence intensity readout and fluorescence microscopic measurement. This phenotypic assay has been tested in patient cells obtained from several lysosomal storage diseases and validated using a known compound, methyl-ß-cyclodextrin, in primary fibroblast cells derived from Niemann Pick C disease patients. The results demonstrate that the Lysotracker assay can be used in compound screening for the identification of lead compounds that are capable of reducing enlarged lysosomes for drug development.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Fenótipo , Linhagem Celular , Rastreamento de Células/métodos , Descoberta de Drogas/métodos , Corantes Fluorescentes , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico
17.
J Biol Chem ; 287(47): 39349-60, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035117

RESUMO

Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca(2+) response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Tocoferóis/farmacologia , Doença de Wolman/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Cricetinae , Exocitose/efeitos dos fármacos , Humanos , Lisossomos/patologia , Doença de Niemann-Pick Tipo C/patologia , Tripeptidil-Peptidase 1 , Doença de Wolman/patologia
18.
J Biomol Screen ; 17(9): 1243-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22923786

RESUMO

Recent advances in stem cell technology have enabled large-scale production of human cells such as cardiomyocytes, hepatocytes, and neurons for evaluation of pharmacologic effect and toxicity of drug candidates. The assessment of compound efficacy and toxicity using human cells should lower the high clinical attrition rates of drug candidates by reducing the impact of species differences on drug efficacy and toxicity from animal studies. Methyl-ß-cyclodextrin (MBCD) has been shown to reduce lysosomal cholesterol accumulation in skin fibroblasts derived from patients with Niemann Pick type C disease and in the NPC1-/- mouse model. However, the compound has never been tested in human differentiated neurons. We have determined the cholesterol reduction effect of MBCD in neurons differentiated from human neural stem cells (NSCs) and commercially available astrocytes. The use of NSCs for producing differentiated neurons in large quantities can significantly reduce the production time and enhance the reproducibility of screening results. The EC(50) values of MBCD on cholesterol reduction in human neurons and astrocytes were 66.9 and 110.7 µM, respectively. The results indicate that human neurons differentiated from the NSCs and human astrocytes are useful tools for evaluating pharmacologic activity and toxicity of drug candidates to predict their clinical efficacy.


Assuntos
Anticolesterolemiantes/farmacologia , Astrócitos/efeitos dos fármacos , Colesterol/metabolismo , Neurônios/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , Animais , Astrócitos/metabolismo , Diferenciação Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo
19.
Bioorg Med Chem Lett ; 20(16): 4932-5, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20620058

RESUMO

A series of aminomethylpyrazoles were prepared and evaluated using cell-based Smoothened beta-lactamase reporter assay and Smoothened binding assay. Potent Smoothened antagonists 10k and 10l were found to inhibit hair growth in vivo in the C3H/HeN mouse hair growth model. The more selective compound 10l was tested negative in the 3T3 NRU assay, indicating a low risk for causing photo-irritation and was efficacious using the C3H/HeN mouse hair growth model although it was slightly less efficacious than that of the reference compound eflornithine (7).


Assuntos
Azetidinas/química , Cabelo/efeitos dos fármacos , Pirazóis/química , Animais , Azetidinas/síntese química , Azetidinas/farmacologia , Eflornitina/farmacologia , Cabelo/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Pirazóis/síntese química , Pirazóis/farmacologia , Relação Estrutura-Atividade
20.
Cancer Biol Ther ; 2(4): 406-15, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14508115

RESUMO

To identify critical genes that mediate p53-induced growth arrest and apoptosis at a global level, we profiled a human lung carcinoma cell model in which cells undergo growth arrest and apoptosis in a p53 and DNA damage-dependent manner. Profiling of the Affymetrix human HG-U1333 GeneChip, covering the entire human transcriptome, revealed about 3, 000 unique genes either induced or repressed during p53-induced growth arrest or apoptosis, respectively. A total of 1, 057 genes, including many well-known p53 targets, responded to both conditions. A mini apoptotic protein database was generated from 3, 033 unique apoptosis responsive genes. Analysis of this database yielded 23 proteins with a pro-apoptotic BH3 domain and three with anti-apoptotic BIR2/BIR3 domains, including well-known p53 targets: Bax, Puma, Noxa and survivin. In addition, 14 mitochondrial proteins were identified that contain a pro-apoptotic AVPI-like motif, and 15 proteins were identified that contain a DAVPI-like domain with the potential of being cleaved by caspases during apoptosis to release the AVPI motif. Many of the genes we identified with these domains do contain p53-binding sites either in the promoter or in the first three introns, suggesting a high probability of being direct p53 targets. Pathway analysis revealed that p53 might control the Wnt pathway through transcriptional regulation of some of its components. Thus, global chip profiling coupled with bioinformatics analysis is a powerful tool in identification of genes critical for p53-induced apoptosis. Further characterization of these genes will lead to a better understanding of the mechanism of p53 action and p53 regulation of other signaling pathways. It will also provide novel cancer drug targets for further validation.


Assuntos
Apoptose/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Proteína Supressora de Tumor p53/fisiologia , Sítios de Ligação , Ciclo Celular/genética , Divisão Celular , Biologia Computacional , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA